Skip to main content
Log in

Synthesis and Structure Refinement of Polycrystalline Solid Solution: Na x Zr2 − x Sb x P3O12 (x = 0.1)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The solid solution of Na1 + x Zr2 − x Sb x P3O12 (x = 0.1) was prepared at 1,000 °C by ceramic route. The ceramic material belonging to sodium zirconium phosphate (hereafter NZP) family crystallizes in space group R-3c with unit cell parameters: a = b = 8.77283(16) Å, c = 22.8375(7) Å, α = β = 90.0° γ = 120.0° and Z = 6. The structure of the title phase has been determined by Rietveld refinement of the powder diffraction data on GSAS software. The refinement converges to a satisfactory structure fit with R p = 0.0764, R wp = 0.1099 and RF 2 = 0.0450. The interatomic distances and bond angles are in good agreement with their standard values. The particle size along prominent reflecting planes ranges between 13 and 50 nm. The polyhedral (ZrO6 and PO4 and NaO8) distortions and valence calculations from bond strength data are also reported. The investigations show that the Sb+3 cation occupies the zirconium (AVI) site of NZP structural framework and resultant charge compensation takes place through partial occupation of M2 site by Na+ ions.

Index Abstract

Synthesis and Structure Refinement of Polycrystalline Solid Solution: Na1 + x Zr 2 −  x Sb x P 3 O 12 ( x  = 0.1)

O. P. Shrivastava and Rashmi Chourasia

Antimony enters crystallochemically in the framework of nano ceramic sodium zirconium phosphate at the Zr site of the ZrO6 octahedra which are inter linked by PO4 tetrahedra through corner sharing of the vertical columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petkov VI, Orlova AI, Kazantsev GN, Samoilov SG, Spiridonova ML (2001) J Therm Anal Calorim 66:623–632

    Article  CAS  Google Scholar 

  2. Yoon CS, Kim JH, Kim CK, Hong KS (2001) Mater Sci Eng B79:6–10

    Article  CAS  Google Scholar 

  3. Bois L, Guitter MJ, Carrot F, Trocellier P, Guatier-Soyer M (2001) J Nucl Mat 297:129–137

    Article  CAS  Google Scholar 

  4. Bhuvneshwari G, Varadaraju UV (1999) J Solid State Chem 145:227

    Article  Google Scholar 

  5. Rega DA, Agrawal DK, Huang CY, McKinstry HA (1992) J Mater Sci 27:2406–2412

    Article  CAS  Google Scholar 

  6. Varadaraju M, Sugantha UV, Subba Rao GV (1994) J Solid State Chem 111:33–40

    Article  Google Scholar 

  7. Petkov VI, Orlova AI (2003) Inorg Mater 39(10):1013–1023

    Article  CAS  Google Scholar 

  8. Yoon CS, Kim JH, Kim CK, Hong KS (2001) Mater Sci Eng B79:6–10

    Article  CAS  Google Scholar 

  9. Breval E, McKinstry HA, Agrawal DK (1998) J Am Ceram Soc 81(4):962–1032

    Google Scholar 

  10. Tantri S, Ushadevi S, Ramasesha SK (2002) Mater Res Bull 37:1141–1147

    Article  Google Scholar 

  11. JCPDS Powder diffraction data file no. 71-0959 (2000) Compiled by International Center for Diffraction Data U.S.A

  12. Larson AC, Von Dreele RB (2000) General structure analysis system technical manual LANSCE, MS–H805. Los Almos National University LAUR, pp 86–748

  13. Carla V, Francisco MSG, Oswaldo LA, Paloma C, Ana MJ, Juan EI, Jose MR (1997) Solid State Ionics 100:127–134

    Article  Google Scholar 

  14. Govindan Kutty KV, Asuvathraman R, Sridhran R (1998) J Mat Sci 33:4007–4013

    Article  Google Scholar 

  15. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

  16. Chakir M, El Jazouli A, de Waal D (2006) J Solid State Chem 179:1883–1891

    Article  CAS  Google Scholar 

  17. West AR (2003) Solid state chemistry and its application, Chapter A9. John Willey and Sons, Singapore, p 710

  18. Brown ID (1978) Chem Soc Revs 7(3):359

    Article  CAS  Google Scholar 

  19. Brown ID, Shannon RD (1973) Acta Crystallogr A29:266

    Google Scholar 

  20. Brese NE, O’ Keeffe M (1991) Acta Cryst B47:192

    CAS  Google Scholar 

  21. Roger HM, Ruslan PL (2004) J Solid State Chem 177:4420–4427

    Article  Google Scholar 

  22. Subramanian MA, Calabrese JC (1993) Mater Res Bull 28:523–529

    Article  CAS  Google Scholar 

  23. Keve ET, Skapski AC (1973) J Solid State Chem 8:159

    Article  CAS  Google Scholar 

  24. Kim ES, Yoon KH (2003) J Eur Ceram Soc 23:2397–2401

    Article  CAS  Google Scholar 

  25. Bhatt N, Vaidya R, Patel SG, Jani AR (2004) Bull Mater Sci 27:23–25

    Article  CAS  Google Scholar 

  26. Terki R, Bertrand G, Aourag H (2005) Microelectron Eng 81:514–523

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the financial assistance received from the Department of Science and Technology, Government of India, New Delhi for the research project no. SR/S3/ME/20/2005-SERC-Engg. under SERC scheme. We also thank the director and staff of U.G.C.-D.A.E Consortium for Scientific Research Indore, India for providing X-ray facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Shrivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, O.P., Chourasia, R. Synthesis and Structure Refinement of Polycrystalline Solid Solution: Na x Zr2 − x Sb x P3O12 (x = 0.1). J Chem Crystallogr 38, 357–362 (2008). https://doi.org/10.1007/s10870-007-9300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-007-9300-z

Keywords

Navigation