Journal of Computational Neuroscience

, Volume 20, Issue 1, pp 77–84 | Cite as

Spike propagation in dendrites with stochastic ion channels

  • Kamran DibaEmail author
  • Christof Koch
  • Idan Segev


We investigate the effects of the stochastic nature of ion channels on the faithfulness, precision and reproducibility of electrical signal transmission in weakly active, dendritic membrane under in vitro conditions. The properties of forward and backpropagating action potentials (BPAPs) in the dendritic tree of pyramidal cells are the subject of intense empirical work and theoretical speculation (Larkum et al., 1999; Zhu, 2000; Larkum et al., 2001; Larkum and Zhu, 2002; Schaefer et al., 2003; Williams, 2004; Waters et al., 2005). We numerically simulate the effects of stochastic ion channels on the forward and backward propagation of dendritic spikes in Monte-Carlo simulations on a reconstructed layer 5 pyramidal neuron. We report that in most instances there is little variation in timing or amplitude for a single BPAP, while variable backpropagation can occur for trains of action potentials. Additionally, we find that the generation and forward propagation of dendritic Ca2+ spikes are susceptible to channel variability. This indicates limitations on computations that depend on the precise timing of Ca2+ spikes.


temporal precision spike reliability coincidence detection 



Backpropagation activated Ca2+ spike


Action potential


Backpropagating action potential


Interstimulus interval


Reference point


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23: 7750–7758.PubMedGoogle Scholar
  2. Bernard C, Johnston D (2003) Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. J. Neurophysiol. 90: 1807–1816.PubMedGoogle Scholar
  3. Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl. Acad. Sci. USA 93: 9921–9925.CrossRefPubMedGoogle Scholar
  4. Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys. J. 71: 3013–3021.PubMedGoogle Scholar
  5. Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17: 6512–6521.PubMedGoogle Scholar
  6. Debanne D (2004) Information processing in the axon. Nat. Rev. Neurosci. 5: 304–316.CrossRefPubMedGoogle Scholar
  7. DeFelice LJ (1981) Introduction to Membrane Noise. Plenum Press, New York.Google Scholar
  8. Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4: 739–751.CrossRefPubMedGoogle Scholar
  9. Diba K, Lester HA, Koch C (2004) Intrinsic noise in cultured hippocampal neurons: experiment and modeling. J. Neurosci. 24: 9723–9733.CrossRefPubMedGoogle Scholar
  10. Faisal AA, Laughlin SB (2002) Channel noise limits the minimum diameter of axons. Journal of Physiology-London 543: 21P–21P.Google Scholar
  11. Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21: 1189–1200.CrossRefPubMedGoogle Scholar
  12. Golding NL, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophysiol. 86: 2998–3010.PubMedGoogle Scholar
  13. Hille B (2001) Ion Channels of Excitable Membranes, 3rd edn. Sinauer, Sunderland, Mass.Google Scholar
  14. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9: 1179–1209.PubMedGoogle Scholar
  15. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.PubMedGoogle Scholar
  16. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869–875.CrossRefPubMedGoogle Scholar
  17. Horikawa Y (1991) Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66: 19–25.CrossRefPubMedGoogle Scholar
  18. Horikawa Y (1993) Simulation study on effects of channel noise on differential conduction at an axon branch. Biophys. J. 65: 680–686.PubMedGoogle Scholar
  19. Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564: 145–160.CrossRefPubMedGoogle Scholar
  20. Johnston D, Wu SM-S (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass.Google Scholar
  21. Johnston D, Hoffman DA, Colbert CM, Magee JC (1999) Regulation of back-propagating action potentials in hippocampal neurons. Curr. Opin. Neurobiol. 9: 288–292.CrossRefPubMedGoogle Scholar
  22. Jones SW (2003) Calcium channels: unanswered questions. J. Bioenerg. Biomembr. 35: 461–475.CrossRefPubMedGoogle Scholar
  23. Jung HY, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci. 17: 6639–6646.PubMedGoogle Scholar
  24. Kang J, Huguenard JR, Prince DA (1996) Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol. 76: 188–198.PubMedGoogle Scholar
  25. Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13: 5301–5311.PubMedGoogle Scholar
  26. Kuriscak E, Trojan S, Wunsch Z (2002) Model of spike propagation reliability along the myelinated axon corrupted by axonal intrinsic noise sources. Physiol. Res. 51: 205–215.Google Scholar
  27. Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 22: 6991–7005.PubMedGoogle Scholar
  28. Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398: 338–341.CrossRefPubMedGoogle Scholar
  29. Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. 533: 447–466.CrossRefPubMedGoogle Scholar
  30. Luscher C, Streit J, Lipp P, Luscher HR (1994) Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. J. Neurophysiol. 72: 634–643.PubMedGoogle Scholar
  31. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.PubMedGoogle Scholar
  32. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363–366.CrossRefPubMedGoogle Scholar
  33. Mainen ZF, Sejnowski TJ (1998) Modeling active dendritic processes in pyramidal neurons. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks, 2nd ed. MIT Press, Cambridge, MA, pp. 171–210.Google Scholar
  34. Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structures, II: information theoretical analysis. Neural Comput. 11: 1831–1873.CrossRefPubMedGoogle Scholar
  35. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7: 5–15.CrossRefPubMedGoogle Scholar
  36. Press WH (1992) Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York.Google Scholar
  37. Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23: 2466–2476.PubMedGoogle Scholar
  38. Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol. 89: 3143–3154.PubMedGoogle Scholar
  39. Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10: 1679–1703.CrossRefPubMedGoogle Scholar
  40. Skaugen E, Walloe L (1979) Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand 107: 343–363.PubMedCrossRefGoogle Scholar
  41. Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268: 297–300.PubMedGoogle Scholar
  42. Steinmetz PN, Manwani A, Koch C, London M, Segev I (2000) Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J. Comput. Neurosci, 9: 133–148.CrossRefPubMedGoogle Scholar
  43. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13: 3252–3265.PubMedGoogle Scholar
  44. Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20: 125–131.CrossRefPubMedGoogle Scholar
  45. van Rossum MC, O’Brien BJ, Smith RG (2003) Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89: 2406–2419.PubMedGoogle Scholar
  46. Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85: 926–937.PubMedGoogle Scholar
  47. Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J. Neurosci. 24: 11127–11136.CrossRefPubMedGoogle Scholar
  48. Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog. Biophys. Mol. Biol. 87: 145–170.CrossRefPubMedGoogle Scholar
  49. Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23: 8558–8567.PubMedGoogle Scholar
  50. White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23: 131–137.CrossRefPubMedGoogle Scholar
  51. White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262–269.PubMedGoogle Scholar
  52. Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat. Neurosci. 7: 961–967.CrossRefPubMedGoogle Scholar
  53. Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. 526 Pt3: 571–587.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Division of BiologyPasadena
  2. 2.Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewark
  3. 3.Life Sciences Institute and Interdisciplinary Center for Neural ComputationHebrew UniversityJerusalemIsrael

Personalised recommendations