Cross-Temporal Meta-Analysis: A Conceptual and Empirical Critique

Abstract

The proper estimation of age, period, and cohort (APC) effects is a pervasive concern for the study of a variety of psychological and social phenomena, inside and outside of organizations. One analytic technique that has been used to estimate APC effects is cross-temporal meta-analysis (CTMA). Although CTMA has some appealing qualities (e.g., ease of interpretability), it has also been criticized on theoretical and methodological grounds. Furthermore, CTMA makes strong assumptions about the nature and operation of cohort effects relative to age and period effects that have not been empirically tested. Accordingly, the goal of this paper is to explore CTMA, its history, and these assumptions. Using a Monte Carlo study, we demonstrate that, in many cases, cohort effects are misestimated (i.e., systematically over- or underestimated) by CTMA. This work provides further evidence that APC effects pose intractable problems for research questions where APC effects are of interest.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    In Twenge’s (2000) paper, Twenge and Campbell (2000) is cited as an unpublished manuscript. Twenge and Campbell (2000) was later published in 2001 and hence appears as such in the “References” section. This explains the incongruity of citing a later paper (2001) that appeared in an earlier one (2000).

References

  1. Baltes, P. B. (1968). Longitudinal and cross-sectional sequences in the study of age and generation effects. Human Development, 11, 145–171. https://doi.org/10.1159/000270604.

    Article  PubMed  Google Scholar 

  2. Baltes, P. B., Reese, H. W., & Lipsitt, L. P. (1980). Life-span developmental psychology. Annual Review of Psychology, 31(1), 65–110. https://doi.org/10.1146/annurev.ps.31.020180.000433.

    Article  PubMed  Google Scholar 

  3. Bandalos, D. L., & Gagné, P. (2012). Simulation methods in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 92–108). New York, NY, US: Guilford Press.

    Google Scholar 

  4. Bell, A., & Jones, K. (2013). The impossibility of separating age, period and cohort effects. Social Science & Medicine, 93, 163–165. https://doi.org/10.1016/j.socscimed.2013.04.029.

    Article  Google Scholar 

  5. Bell, A., & Jones, K. (2014). Another 'futile quest'? A simulation study of Yang and Land's hierarchical age-period-cohort model. Demographic Research, 30, 333–360. https://doi.org/10.4054/DemRes.2013.30.11.

    Article  Google Scholar 

  6. Benson, J., Brown, M., Glennie, M., O'Donnell, M., & O'Keefe, P. (2018). The generational “exchange” rate: How generations convert career development satisfaction into organisational commitment or neglect of work. Human Resource Management Journal, 28(4), 524–539. https://doi.org/10.1111/1748-8583.12198.

    Article  Google Scholar 

  7. Bianchi, E. C. (2014). Entering adulthood in a recession tempers later narcissism. Psychological Science, 25, 1429–1437. https://doi.org/10.1177/0956797614532818.

    Article  PubMed  Google Scholar 

  8. Blyth, C. R. (1972). On Simpson's paradox and the sure-thing principle. Journal of the American Statistical Association, 67(338), 364–366. https://doi.org/10.1080/01621459.1972.10482387.

    Article  Google Scholar 

  9. Bolger, N., & Laurenceau, J. P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. New York: Guilford Press.

    Google Scholar 

  10. Bubany, S. T., & Hansen, J. I. C. (2011). Birth cohort change in the vocational interests of female and male college students. Journal of Vocational Behavior, 78(1), 59–67. https://doi.org/10.1016/j.jvb.2010.08.002.

    Article  Google Scholar 

  11. Campbell, S. M., Twenge, J. M., & Campbell, W. K. (2017). Fuzzy but useful constructs: Making sense of the differences between generations. Work, Aging and Retirement, 3(2), 130–139. https://doi.org/10.1093/workar/wax001.

    Article  Google Scholar 

  12. Clark, D. M. T., Loxton, N. J., & Tobin, S. J. (2015). Declining loneliness over time: Evidence from American colleges and high schools. Personality and Social Psychology Bulletin, 41(1), 78–89. https://doi.org/10.1177/0146167214557007.

    Article  PubMed  Google Scholar 

  13. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  14. Costanza, D. P., Darrow, J. B., Yost, A. B., & Severt, J. B. (2017). A review of analytical methods used to study generational differences: Strengths and limitations. Work, Aging and Retirement, 3(2), 149–165. https://doi.org/10.1093/workar/wax002.

    Article  Google Scholar 

  15. Costanza, D. P., Darrow, J. B., Fraser, R. L., Severt, J. B., & Gade, P. A. (2012). Generational differences in work-related variables: A meta-analysis. Journal of Business and Psychology, 27(4), 375–394. https://doi.org/10.1007/s10869-012-9259-4.

    Article  Google Scholar 

  16. Costanza, D. P., & Finkelstein, L. M. (2015). Generationally-based differences in the workplace: Is there a there there? Industrial and Organizational Psychology: Perspectives on Sciences and Practice, 8(3), 308–323. https://doi.org/10.1017/iop.2015.15.

    Article  Google Scholar 

  17. Costanza, D. P., Finkelstein, L. M., Imose, R. A., & Ravid, D. M. in press Inappropriate inferences from generational research. In B. Hoffman, M. Shoss, & L. Wegman (Eds.), The Cambridge handbook of the changing nature of work. Cambridge, U.K.: Cambridge University Press.

  18. Donnellan, M. B., Trzesniewski, K. H., & Robins, R. W. (2009). An emerging epidemic of narcissism or much ado about nothing? Journal of Research in Personality, 43(3), 498–501. https://doi.org/10.1016/j.jrp.2008.12.010.

    Article  Google Scholar 

  19. Edershile, E. A., Woods, W. C., Sharpe, B. M., Crowe, M. L., Miller, J., & Wright, A. G. (2018, July 12). A day in the life of. Narcissus: Measuring narcissistic grandiosity and vulnerability in daily life. https://doi.org/10.31234/osf.io/jpqst.

    Google Scholar 

  20. Elder Jr., G. H. (1974). Children of the great depression: Social change in life experiences. Chicago, IL: University of Chicago Press.

    Google Scholar 

  21. Elder Jr., G. H., & Liker, J. K. (1982). Hard times in women’s lives: Historical in influences across forty years. American Journal of Sociology, 88, 241–269. https://doi.org/10.1086/227670.

    Article  Google Scholar 

  22. Eschleman, K. J., King, M., Mast, D., Ornellas, R., & Hunter, D. (2017). The effects of stereotype activation on generational differences. Work, Aging and Retirement, 3(2), 200–208. https://doi.org/10.1093/workar/waw032.

    Article  Google Scholar 

  23. Gentile, B., Wood, L. A., Twenge, J. M., Hoffman, B. J., & Campbell, W. K. (2015). The problem of generational change: Why cross-sectional designs are inadequate for investigating generational differences. In C. E. Lance & R. J. Vandenberg (Eds.), More statistical myths and methodological urban legends. New York: Routledge.

    Google Scholar 

  24. Gergen, K. J. (1973). Social psychology as history. Journal of Personality and Social Psychology, 26(2), 309–320. https://doi.org/10.1037/h0034436.

    Article  Google Scholar 

  25. Gerstorf, D., Ram, N., Hoppmann, C., Willis, S. L., & Schaie, K. W. (2011). Cohort differences in cognitive aging and terminal decline in the Seattle Longitudinal Study. Developmental Psychology, 47, 1026–1041. https://doi.org/10.1037/a0023426.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Glenn, N. D. (1976). Cohort analysts' futile quest: Statistical attempts to separate age, period and cohort effects. American Sociological Review, 41(5), 900–904. https://doi.org/10.2307/2094738.

    Article  Google Scholar 

  27. Glenn, N. D. (2005). Cohort analysis (2nd ed.). London: Sage.

    Google Scholar 

  28. Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5(1), 33–36. https://doi.org/10.1111/j.1467-9280.1994.tb00610.x.

    Article  Google Scholar 

  29. Hedges, L. V., & Becker, B. J. (1986). Statistical methods in the meta-analysis of research on gender differences. In J. S. Hyde & M. C. Linn (Eds.), The psychology of gender: Advances through meta-analysis (pp. 14–50). Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  30. Hofer, S. M., & Sliwinski, M. J. (2006). Design and analysis of longitudinal studies on aging. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (6th ed., pp. 15–37). Amsterdam: Elsevier.

    Google Scholar 

  31. Huang, J. (2018). Changes of job burnout in Chinese nurses over 2004–2013: Cross-temporal meta analysis. Current Psychology, 37(3), 583–590. https://doi.org/10.1007/s12144-016-9540-1.

    Article  Google Scholar 

  32. Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Thousand Oaks, CA: Sage.

    Google Scholar 

  33. Karazsia, B. T., Tylka, T. L., & Murnen, S. K. (2017). Is body dissatisfaction changing across time? A cross-temporal meta-analysis. Psychological Bulletin, 143(3), 293–320. https://doi.org/10.1037/bul0000081.

    Article  PubMed  Google Scholar 

  34. Klein, K. J., Dansereau, F., & Hall, R. J. (1994). Levels issues in theory development, data collection, and analysis. Academy of Management Review, 19, 195–229. https://doi.org/10.1177/109442810033001.

    Article  Google Scholar 

  35. Kosloski, K. (1986). Isolating age, period, and cohort effects in developmental research: A critical review. Research on Aging, 8(4), 460–479. https://doi.org/10.1177/0164027586008004002.

    Article  PubMed  Google Scholar 

  36. Labouvie-Vief, G., Hakim-Larson, J., DeVoe, M., & Schoeberlein, S. (1989). Emotions and self-regulation: A life span view. Human Development, 32(5), 279–299. https://doi.org/10.1159/000276480.

    Article  Google Scholar 

  37. Lub, X., Nije Bijvank, M., Bal, P. M., Blomme, R., & Schalk, R. (2012). Different or alike? Exploring the psychological contract and commitment of different generations of hospitality workers. International Journal of Contemporary Hospitality Management, 24(4), 553–573. https://doi.org/10.1108/09596111211226824.

    Article  Google Scholar 

  38. Lyons, S. T., & Schweitzer, L. (2017). A qualitative exploration of generational identity: Making sense of young and old in the context of today’s workplace. Work, Aging and Retirement, 3(2), 209–224. https://doi.org/10.1093/workar/waw024.

    Article  Google Scholar 

  39. Mackenzie, C., Erickson, J., Deane, F., & Wright, M. (2014). Changes in attitudes toward seeking mental health services: A 40-year cross-temporal meta-analysis. Clinical Psychology Review, 34(2), 99–106. https://doi.org/10.1016/j.cpr.2013.12.001.

    Article  PubMed  Google Scholar 

  40. Malahy, L. W., Rubinlicht, M. A., & Kaiser, C. R. (2009). Justifying inequality: A cross-temporal investigation of U.S. income disparities and just-world beliefs from 1973 to 2006. Social Justice Research, 22, 369–383. https://doi.org/10.1007/s11211-009-0103-6.

    Article  Google Scholar 

  41. Ng, E. S., Johnson, J. M., & Burke, R. J. (2015). Millennials: Who are they, how are they different, and why should we care. In R. J. Burke, C. Cooper, & A.-S. Antoniou (Eds.), The multi-generational and aging workforce challenges and opportunities. Cheltenham, U.K.: Edward Elgar Publishing.

    Google Scholar 

  42. Ostroff, C. (1993). Comparing correlations based on individual-level and aggregated data. Journal of Applied Psychology, 78(4), 569–582. https://doi.org/10.1037/0021-9010.78.4.569.

    Article  Google Scholar 

  43. Ostroff, C., & Harrison, D. A. (1999). Meta-analysis, level of analysis, and best estimates of population correlations: Cautions for interpreting meta-analytical results in organizational behavior. Journal of Applied Psychology, 84(2), 260–270. https://doi.org/10.1037/0021-9010.84.2.260.

    Article  Google Scholar 

  44. Palmore, E. (1978). When can age, period, and cohort be separated? Social Forces, 57(1), 282–295. https://doi.org/10.2307/2577639.

    Article  Google Scholar 

  45. Perry, E. L., Golom, F. D., Catenacci, L., Ingraham, M. E., Covais, E. M., & Molina, J. J. (2017). Talkin’ ‘bout your generation: The impact of applicant age and generation on hiring-related perceptions and outcomes. Work, Aging and Retirement, 3(2), 186–199. https://doi.org/10.1093/workar/waw029.

    Article  Google Scholar 

  46. Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Pervasiveness of the IQ rise: A cross-temporal meta-analysis. PLoS ONE, 5(12), e14406. https://doi.org/10.1371/journal.pone.0014406.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Core Team, R. (2016). R: A language and environment for statistical computing. In R Foundation for Statistical Computing. Vienna: Austria. URL https://www.R-project.org/.

    Google Scholar 

  48. Roberts, B. W., Caspi, A., & Moffitt, T. E. (2001). The kids are alright: Growth and stability in personality development from adolescence to adulthood. Journal of Personality and Social Psychology, 81(4), 670–683. https://doi.org/10.1037/0022-3514.81.4.670.

    Article  PubMed  Google Scholar 

  49. Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change in personality traits across the life course: A meta-analysis of longitudinal studies. Psychological Bulletin, 132(1), 1–25. https://doi.org/10.1037/0033-2909.132.1.1.

    Article  PubMed  Google Scholar 

  50. Roberts, B. W., & Wood, D. (2006). Personality development in the context of the neo-socioanalytic model of personality. In D. K. Mroczek & T. D. Little (Eds.), Handbook of personality development (pp. 11–39). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  51. Robins, R. W., Fraley, R. C., Roberts, B. W., & Trzesniewski, K. H. (2001). A longitudinal study of personality change in young adulthood. Journal of Personality, 69(4), 617–640. https://doi.org/10.1037/0033-2909.132.1.1.

    Article  PubMed  Google Scholar 

  52. Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15(3), 351–357. https://doi.org/10.2307/2087176.

    Article  Google Scholar 

  53. Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 59–82. https://doi.org/10.1146/annurev.psych.52.1.59.

    Article  PubMed  Google Scholar 

  54. Rosenthal, R., & Rosnow, R. L. (1984). Essentials of behavioral research: Methods and data analysis. New York: McGraw-Hill.

    Google Scholar 

  55. Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in research: A correlational approach. New York: Cambridge University Press.

    Google Scholar 

  56. Rauvola, R. S., Rudolph, C. W., & Zacher, H. (2018). Generationalism: Problems and implications. Organizational Dynamics. https://doi.org/10.1016/j.orgdyn.2018.05.006.

  57. Rudolph, C. W., Rauvola, R. S., & Zacher, H. (2018). Leadership and generations at work: A critical review. The Leadership Quarterly, 29(1), 44–57. https://doi.org/10.1016/j.leaqua.2017.09.004.

    Article  Google Scholar 

  58. Rudolph, C. W. (2016). Lifespan developmental perspectives on working: A literature review of motivational theories. Work, Aging and Retirement, 2(2), 130–158. https://doi.org/10.1093/workar/waw012.

    Article  Google Scholar 

  59. Rudolph, C. W., & Baltes, B. B. (2016). Age and health jointly moderate the influence of flexible work arrangements on work engagement: Evidence from two empirical studies. Journal of Occupational Health Psychology, 22(1), 40–58. https://doi.org/10.1037/a0040147.

    Article  PubMed  Google Scholar 

  60. Rudolph, C. W., & Zacher, H. (2015). Intergenerational perceptions and conflicts in multi-age and multigenerational work environments. In L. Finkelstein, D. Truxillo, F. Fraccaroli, & R. Kanfer (Eds.), SIOP organizational frontier series—Facing the challenges of a multi-age workforce: A use inspired approach (pp. 253–282). New York, NY: Psychology Press.

    Google Scholar 

  61. Rudolph, C. W., & Zacher, H. (2017). Considering generations from a lifespan developmental perspective. Work, Aging and Retirement, 3(2), 113–129. https://doi.org/10.1093/workar/waw019.

    Article  Google Scholar 

  62. Rudolph, C. W., & Zacher, H. (2018). The kids are alright: Taking stock of generational differences at work. The Industrial-Organizational Psychologist, 55(3), 1–7.

    Google Scholar 

  63. Schaie, K. W. (1986). Beyond calendar definitions of age, time, and cohort: The general developmental model revisited. Developmental Review, 6(3), 252–277. https://doi.org/10.1016/0273-2297(86)90014-6.

    Article  Google Scholar 

  64. Schaie, K. W. (1965). A general model for the study of developmental problems. Psychological Bulletin, 64(2), 92.

    Article  Google Scholar 

  65. Schaie, K. W. (2013). Developmental in influences on adult intelligence: A Seattle longitudinal study (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  66. Srivastava, S., John, O. P., Gosling, S. D., & Potter, J. (2003). Development of personality in early and middle adulthood: Set like plaster or persistent change? Journal of Personality and Social Psychology, 84(5), 1041–1053. https://doi.org/10.1037/0022-3514.84.5.1041.

    Article  PubMed  Google Scholar 

  67. Stone, D. L., & Deadrick, D. L. (2015). Challenges and opportunities affecting the future of human resource management. Human Resource Management Review, 25(2), 139–145. https://doi.org/10.1016/j.hrmr.2015.01.003.

    Article  Google Scholar 

  68. Szucs, D., & Ioannidis, J. P. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biology, 15(3), e2000797. https://doi.org/10.1371/journal.pbio.2000797.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tan, J. Y., Huedo-Medina, T. B., Lennon, C. A., White, A. C., & Johnson, B. T. (2010). Us versus them in context: Meta-analysis as a tool for geotemporal trends in intergroup relations. International Journal of Conflict and Violence, 4(2), 288–297.

    PubMed  PubMed Central  Google Scholar 

  70. Trzesniewski, K. H., & Donnellan, M. B. (2010). Rethinking “generation me”: A study of cohort effects from 1976–2006. Perspectives on Psychological Science, 5(1), 58–75. https://doi.org/10.1177/1745691609356789.

    Article  PubMed  Google Scholar 

  71. Trzesniewski, K. H., Donnellan, M. B., & Robins, R. W. (2008). Is “generation me” really more narcissistic than previous generations? Journal of Personality, 76(4), 903–918. https://doi.org/10.1111/j.1467-6494.2008.00508.x.

    Article  Google Scholar 

  72. Tufte, E. (1983). The visual display of quantitative information. Cheshire, Connecticut: Graphics Press.

    Google Scholar 

  73. Twenge, J. M. (1997a). Changes in masculine and feminine traits over time: A meta-analysis. Sex Roles, 36(5–6), 305–325. https://doi.org/10.1007/BF02766650.

    Article  Google Scholar 

  74. Twenge, J. M. (1997b). Attitudes toward women, 1970–1995. Psychology of Women Quarterly, 21(1), 35–51. https://doi.org/10.1111/j.1471-6402.1997.tb00099.x.

    Article  Google Scholar 

  75. Twenge, J. M. (2000). The age of anxiety? Birth cohort change in anxiety and neuroticism, 1952–1993. Journal of Personality and Social Psychology, 79(6), 1007–1021. https://doi.org/10.1037/0022-3514.79.6.1007.

    Article  PubMed  Google Scholar 

  76. Twenge, J. M. (2008). Generation me, the origins of birth cohort differences in personality traits, and cross-temporal meta-analysis. Social and Personality Psychology Compass, 2(3), 1440–1454. https://doi.org/10.1111/j.1751-9004.2008.00094.x.

    Article  Google Scholar 

  77. Twenge, J. M. (2009). Generational changes and their impact in the classroom: Teaching Generation Me. Medical Education, 43(5), 398–405. https://doi.org/10.1111/j.1365-2923.2009.03310.x.

    Article  PubMed  Google Scholar 

  78. Twenge, J. M. (2017). IGen: Why today's super-connected kids are growing up less rebellious, more tolerant, less happy—and completely unprepared for adulthood—and what that means for the rest of us. New York: Simon and Schuster.

    Google Scholar 

  79. Twenge, J. M., & Campbell, W. K. (2001). Age and birth cohort differences in self-esteem: A cross-temporal meta-analysis. Personality and Social Psychology Review, 5(4), 321–344. https://doi.org/10.1207/S15327957PSPR05043.

  80. Twenge, J. M., Campbell, S. M., Hoffman, B. J., & Lance, C. E. (2010). Generational differences in work values: Leisure and extrinsic values increasing, social and intrinsic values decreasing. Journal of Management, 36, 1117–1142. https://doi.org/10.1177/0149206309352246.

    Article  Google Scholar 

  81. Twenge, J. M., Konrath, S., Foster, J. D., Campbell, W. K., & Bushman, B. J. (2008). Egos inflating over time: A cross-temporal meta-analysis of the Narcissistic Personality Inventory. Journal of Personality, 76(4), 875–902. https://doi.org/10.1111/j.1467-6494.2008.00507.x.

    Article  PubMed  Google Scholar 

  82. Twenge, J. M., Zhang, L., & Im, C. (2004). It’s beyond my control: A cross-temporal meta-analysis of increasing externality in Locus of Control, 1960–2002. Personality and Social Psychology Review, 8, 308–319. https://doi.org/10.1207/s15327957pspr08035.

  83. Tymula, A., Belmaker, L. A. R., Ruderman, L., Glimcher, P. W., & Levy, I. (2013). Like cognitive function, decision making across the life span shows profound age-related changes. Proceedings of the National Academy of Sciences, 110(42), 17143–17148. https://doi.org/10.1073/pnas.1309909110.

    Article  Google Scholar 

  84. Urick, M. J., Hollensbe, E. C., Masterson, S. S., & Lyons, S. T. (2017). Understanding and managing intergenerational conflict: An examination of influences and strategies. Work, Aging and Retirement, 3(2), 166–185. https://doi.org/10.1093/workar/waw009.

    Article  Google Scholar 

  85. Walters, N. T., & Horton, R. (2015). A diary study of the influence of Facebook use on narcissism among male college students. Computers in Human Behavior, 52, 326–330. https://doi.org/10.1016/j.chb.2015.05.054.

    Article  Google Scholar 

  86. Wegman, L. A., Hoffman, B. J., Carter, N. T., Twenge, J. M., & Guenole, N. (2018). Placing job characteristics in context: Cross-temporal meta-analysis of changes in job characteristics since 1975. Journal of Management, 44(1), 352–386. https://doi.org/10.1177/0149206316654545.

    Article  Google Scholar 

  87. Wolf, F. M. (1986). Meta-analysis: Quantitative methods for research synthesis (Vol. 59). Thousand Oaks, CA: Sage.

    Google Scholar 

  88. Yang, Y. (2008). Age, period, cohort effects. In D. Carr (Ed.), Encyclopedia of the life course and human development (Vol. 3, pp. 6–10). USA: Detroit: Macmillan Reference.

    Google Scholar 

  89. Yang, Z., Cao, F., Lu, H., Zhu, X., & Miao, D. (2014). Changes of anxiety in Chinese military personnel over time: A cross-temporal meta-analysis. International Journal of Mental Health Systems, 8(19), 1–9. https://doi.org/10.1186/1752-4458-8-19.

    Article  Google Scholar 

  90. Yang, Y., & Land, K. C. (2006). A mixed models approach to the age-period-cohort analysis of repeated cross-section surveys, with an application to data on trends in verbal test scores. Sociological Methodology, 36(1), 75–97. https://doi.org/10.1111/j.1467-9531.2006.00175.x.

    Article  Google Scholar 

  91. Yang, Y., & Land, K. C. (2013). Age-period-cohort analysis: New models, methods, and empirical applications. Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cort W. Rudolph.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A pre-print version of this work can be found here: https://psyarxiv.com/exskp/. Code to replicate the simulations presented here can be found at: https://osf.io/mak6y/. A Shiny web-app is also available here: https://cortrudolph.shinyapps.io/CTMA_Simulation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudolph, C.W., Costanza, D.P., Wright, C. et al. Cross-Temporal Meta-Analysis: A Conceptual and Empirical Critique. J Bus Psychol 35, 733–750 (2020). https://doi.org/10.1007/s10869-019-09659-2

Download citation

Keywords

  • Age
  • Cohorts
  • Cross-temporal meta-analysis
  • Generations
  • Lifespan