Skip to main content

The Incremental Contribution of Complex Problem-Solving Skills to the Prediction of Job Level, Job Complexity, and Salary

Abstract

As work life becomes increasingly complex, higher order thinking skills, such as complex problem-solving skills (CPS), are becoming critical for occupational success. It has been shown that individuals gravitate toward jobs and occupations that are commensurate with their level of general mental ability (GMA). On the basis of the theory of occupational gravitation, CPS theory, and previous empirical findings on the role of CPS in educational contexts, we examined whether CPS would make an incremental contribution to occupational success after controlling for GMA and education. Administering computerized tests and self-reports in a multinational sample of 671 employees and analyzing the data with structural equation modeling, we found that CPS incrementally explained 7% and 3% of the variance in job complexity and salary, respectively, beyond both GMA and education. We found that CPS offered no incremental increase in predicting job level. CPS appears to be linked to job complexity and salary in a range of occupations, and this link cannot be explained as an artifact of GMA and education. Thus, CPS incrementally predicts success, potentially contributes to the theory of job gravitation, and adds to the understanding of complex cognition in the workplace.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. Ederer et al.’s (2015) study served as a starting point for the current study and used a subsample (n = 399) with less than 50% overlap with the sample used here. More important, the current study includes two dependent variables, occupational level and job complexity, not examined by Ederer et al. (2015) and frames the analysis in terms of a multivariate model with multiple dependent variables, in contrast to the univariate wage regression model in Ederer et al. (2015).

  2. Several of the authors of the current paper were part of the team that developed the computerized CPS assessments used in PISA.

  3. We collected data from 676 respondents but dropped five employees who reported unusually high or low wages relative to the median (with a cut-off of more than 2.5 times the Median Absolute Deviation [MAD; Hampel, 1974] around the median; as recommended by Leys, Ley, Klein, Bernard, & Licata, 2013). As a result, our sample included N = 671 working individuals.

  4. Mean monthly salary per job level were $1,495.84 (SD = 292.27) on Level 1, $2,044.72 (SD = 1,740.99) on Level 2, $2,929.71 (SD\ = 1,565.23) on Level 3, $2,907.23 (SD = 1,377.89) on Level 4, and $5,916.80 (SD = 3,371.15) on Level 5 (i.e., Managers). This finding largely supports that ISCO-08 sorts jobs by salary levels, as suggested by the OECD (2013a).

References

  • Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 30–60. https://doi.org/10.1037/0033-2909.131.1.30.

    Article  PubMed  Google Scholar 

  • Arthur, W., & Day, D. V. (1994). Development of a short form for the raven progressive matrices test. Educational and Psychological Measurement, 54, 394–403.

    Google Scholar 

  • Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly Journal of Economics, 118, 1279–1333. https://doi.org/10.1162/003355303322552801.

    Article  Google Scholar 

  • Autor, D. H., Katz, L. F., & Kearney, M. S. (2006). The polarization of the U.S. labor market. American Economic Review, 96, 189–194. https://doi.org/10.1257/000282806777212620.

    Article  Google Scholar 

  • Bakken, B. E. (1993). Learning and transfer of understanding in dynamic decision environments. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Barnett, W. S. (1995). Long-term effects of early childhood programs on cognitive and school outcomes. The Future of Children, 5, 25–50.

    Google Scholar 

  • Becker, S. O., Ekholm, K., & Muendler, M.-A. (2013). Offshoring and the onshore composition of tasks and skills. Journal of International Economics, 90, 91-106. https://doi.org/10.1016/j.jinteco.2012.10.005.

    Google Scholar 

  • Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining 21st century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Dordrecht: Springer. Retrieved from http://www.springerlink.com.

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Google Scholar 

  • Brand, C. (1987). The importance of general intelligence. In S. Modgil & C. Brand (Eds.), Arthur Jensen: Consensus and controversy (pp. 251–265). New York, NY: Falmer

  • Bretz, R. D., & Judge, T. A. (1994). Person-organization fit and the theory of work adjustment: Implications for satisfaction, tenure, and career success. Journal of Vocational Behavior, 44, 32–54. https://doi.org/10.1006/jvbe.1994.1003.

    Article  Google Scholar 

  • Cadle, Adrienne W.(2012), The relationship between rating scales used to evaluate tasks from task inventories for licensure and certification examinations. Graduate theses and dissertations. http://scholarcommons.usf.edu/etd/4296

  • Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices test. Psychological Review, 97, 404–431.

    PubMed  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.

    Google Scholar 

  • Cascio, W. F. (1995). Whether industrial and organizational psychology in a changing world of work? American Psychologist, 50, 928–939. https://doi.org/10.1037/0003-066X.50.11.928.

    Article  Google Scholar 

  • Conte, J. M., Dean, M. A., Ringenbach, K. L., Moran, S. K., & Landy, F. J. (2005). The relationship between work attitudes and job analysis ratings: Do rating scale type and task discretion matter? Human Performance, 18, 1–21.

    Google Scholar 

  • Converse, P. D., Piccone, K. A., & Tocci, M. C. (2014). Childhood self-control, adolescent behavior, and career success. Personality and Individual Differences, 59, 65–70. https://doi.org/10.1016/j.paid.2013.11.007.

    Article  Google Scholar 

  • Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (2011). Beyond IQ. A latent state trait analysis of general intelligence, dynamic decision making, and implicit learning. Intelligence, 39, 323–334. https://doi.org/10.1016/j.intell.2011.06.004.

    Article  Google Scholar 

  • Desmarais, L. B., & Sackett, P. R. (1993). Investigating a cognitive complexity hierarchy of jobs. Journal of Vocational Behavior, 43, 279–297. https://doi.org/10.1006/jvbe.1993.1048.

    Article  Google Scholar 

  • Ederer, P., Nedelkoska, L., Patt, A., & Castellazzi, S. (2015). What do employers pay for employees’ complex problem solving skills? International Journal of Lifelong Education, 34, 430–447. https://doi.org/10.1080/02601370.2015.1060026.

    Article  Google Scholar 

  • Frensch, P. A., & Funke, J. (1995). Definitions, traditions, and a general framework for understanding complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (p. 14). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment org? Psychological Science, 15, 373–378.

    PubMed  Google Scholar 

  • Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking & Reasoning, 7, 69–89. https://doi.org/10.1080/13546780042000046.

    Article  Google Scholar 

  • Funke, J. (2010). Complex problem solving: A case for complex cognition? Cognitive Processing, 11, 133–142. https://doi.org/10.1007/s10339-009-0345-0.

    Article  PubMed  Google Scholar 

  • Gignac, G. E. (2015). Raven’s is not a pure measure of general intelligence: Implications for g theory and the brief measurement of g. Intelligence, 52, 72–79.

    Google Scholar 

  • Gonzalez, C., Vanyukov, P., & Martin, M. K. (2005). The use of microworlds to study dynamic decision making. Computers in Human Behavior, 21, 273–286. https://doi.org/10.1016/j.chb.2004.02.014.

    Article  Google Scholar 

  • Goos, M., Manning, A., & Salomons, A. (2009). Job polarization in Europe. The American Economic Review, 99, 58–63. https://doi.org/10.1257/aer.99.2.58.

    Article  Google Scholar 

  • Gottfredson, L. S. (1986). Occupational aptitude patterns map: Development and implications of a theory of job aptitude requirements. Journal of Vocational Behavior, 29, 254–291. https://doi.org/10.1016/0001-8791(86)90008-4.

    Article  Google Scholar 

  • Gottfredson, L. S. (2002). Where and why g matters: Not a mystery. Human Performance, 15(1–2), 25–46. https://doi.org/10.1080/08959285.2002.9668082.

    Article  Google Scholar 

  • Gottfredson, L. S. (2003). g, jobs and life. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 293-342). Amsterdam: Pergamon.

    Google Scholar 

  • Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic problem solving: A new assessment perspective. Applied Psychological Measurement, 36, 189–213. https://doi.org/10.1177/0146621612439620.

    Article  Google Scholar 

  • Greiff, S., Fischer, A., Wüstenberg, S., Sonnleitner, P., Brunner, M., & Martin, R. (2013a). A multitrait-multimethod study of assessment instruments for complex problem solving. Intelligence, 41, 579–596. https://doi.org/10.1016/j.intell.2013.07.012.

    Article  Google Scholar 

  • Greiff, S., Holt, D. V., & Funke, J. (2013b). Perspectives on problem solving in educational assessment: Analytical, interactive, and collaborative problem solving. Journal of Problem Solving, 5, 71–91. https://doi.org/10.7771/1932-6246.1153.

    Article  Google Scholar 

  • Gustafsson, J.- E. (1988). Hierarchical models of individual differences in cognitive abilities. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 35–71). Hillsdale, NJ: Erlbaum.

  • Gustafsson, J. E. (2002). Measurement from a hierarchical point of view. In H. L. Braun, D. G. Jackson, & D. E. Wiley (Eds.), The role of constructs in psychological and educational measurement (pp. 73–95). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Guthrie, P., Dumay, A., Massingham, P., & Tam, L. (2015). The relationship between human capital, value creation and employee reward. Journal of Intellectual Capital, 16, 390–418. https://doi.org/10.1108/JIC-06-2014-0075.

    Article  Google Scholar 

  • Haier, R. J. (2014). Increased intelligence is a myth (so far). Frontiers in Systems Neuroscience, 8, 34.

    PubMed  PubMed Central  Google Scholar 

  • Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383–393. https://doi.org/10.1080/01621459.1974.10482962.

    Article  Google Scholar 

  • Hertzog, C., & Schaie, K. W. (1988). Stability and change in adult intelligence: 2. Simultaneous analysis of longitudinal means and covariance structures. Psychology and Aging, 3, 122–130.

    PubMed  Google Scholar 

  • Hoffman, B. (2016). The Changing Nature of Work: Evidence and Implications. Symposium Presentation at The 31st Annual Society of Industrial and Organisational Psychology (SIOP) Conference in Anaheim, CA, US, 14.04. - 16.04.2016.

  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. https://doi.org/10.1080/10705519909540118.

    Article  Google Scholar 

  • International Labour Office. (2012). International Standard Classification of Occupations: ISCO-08. Geneva: International Labour Office.

    Google Scholar 

  • Jaskolka, G., Beyer, J. M., & Trice, H. M. (1985). Measuring and predicting managerial success. Journal of Vocational Behavior, 26, 189–205. https://doi.org/10.1016/0001-8791(85)90018-1.

    Article  Google Scholar 

  • Jensen, A. (1980). Bias in mental testing. New York: Free Press.

    Google Scholar 

  • Jensen, A. R. (1998). The g factor and the design of education. In R. J. Sternberg & W. M. Williams (Eds.), Intelligence, instruction, and assessment. Theory into practice (pp. 111–131). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jensen, E. (2005). Learning and transfer from a simple dynamic system. Scandinavian Journal of Psychology, 46, 119–131. https://doi.org/10.1111/j.1467-9450.2005.00442.x.

    Article  PubMed  Google Scholar 

  • Judge, T. A., & Kammeyer-Mueller, J. D. (2012). General and specific measures in organizational behavior research: Considerations, examples, and recommendations for researchers. Journal of Organizational Behavior, 33, 161–174.

    Google Scholar 

  • Judge, T. A., Klinger, R. L., & Simon, L. S. (2010). Time is on my side: Time, general mental ability, human capital, and extrinsic career success. Journal of Applied Psychology, 95, 92–107. https://doi.org/10.1037/a0017594.

    Article  PubMed  Google Scholar 

  • Kell, H. J., Lubinski, D., & Benbow, C. P. (2013). Who rises to the top? Early indicators. Psychological Science, 24, 648–659.

    PubMed  Google Scholar 

  • Kretzschmar, A., & Süß, H.-M. (2015). A study on the training of complex problem solving competence. Journal of Dynamic Decision Making, 1, 1–16. https://doi.org/10.11588/jddm.2015.1.15455.

    Article  Google Scholar 

  • Kretzschmar, A., Neubert, J. C., Wüstenberg, S., & Greiff, S. (2016). Construct validity of complex problem solving: A comprehensive view on different facets of intelligence and school grades. Intelligence, 54, 55–69. https://doi.org/10.1016/j.intell.2015.11.004.

    Article  Google Scholar 

  • Kvist, A. V., & Gustafsson, J.- E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell’s investment theory. Intelligence, 36, 422–436. https://doi.org/10.1016/j.intell.2007.08.004.

    Google Scholar 

  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49, 764–766. https://doi.org/10.1016/j.jesp.2013.03.013.

    Article  Google Scholar 

  • Lievens, F., & Patterson, F. (2011). The validity and incremental validity of knowledge tests, low-fidelity simulations, and high-fidelity simulations for predicting job performance in advanced-level high-stakes selection. Journal of Applied Psychology, 96, 927–940. https://doi.org/10.1037/a0023496.

    PubMed  Google Scholar 

  • Lievens, F., & Reeve, C. L. (2012). Where I-O psychology should really (re)start its investigation of intelligence constructs and their measurement. Industrial and Organizational Psychology: Perspectives on Science and Practice, 5, 153–158.

    Google Scholar 

  • Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151–173. https://doi.org/10.1207/S15328007SEM0902_1.

    Article  Google Scholar 

  • LLLight in Europe Project. (2015a). Complex problem solving: A promising candidate for facilitating the acquisition of job skills. Retrieved from http://www.lllightineurope.com/policy-briefs.

  • LLLight in Europe Project. (2015b). Enterprises are greatly important for lifelong learning activities. Retrieved from http://www.lllightineurope.com/policy-briefs.

  • LLLight in Europe Project. (2015c). Synthesis report. Retrieved from http://www.lllightineurope.com/reports/

  • Lubinski, D., Benbow, C. P., & Kell, H. J. (2014). Life paths and accomplishments of mathematically precocious males and females four decades later. Psychological Science, 25, 2217–2232.

    PubMed  Google Scholar 

  • Makel, M. C., Kell, H. J., Lubinski, D., Putallaz, M., & Benbow, C. P. (2016). When lightning strikes twice: Profoundly gifted, profoundly accomplished. Psychological Science, 27, 1004–1018.

    PubMed  Google Scholar 

  • McCormick, E. J., Jeanneret, P. R., & Mecham, R. C. (1972). A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire (PAQ). Journal of Applied Psychology, 56(4), 347–368. https://doi.org/10.1037/h0033099.

    Article  Google Scholar 

  • McCormick, E. J., DeNisi, A. S., & Shaw, J. B. (1979). Use of the position analysis questionnaire for establishing the job component validity of tests. Journal of Applied Psychology, 64, 51–56. https://doi.org/10.1037/0021-9010.64.1.51.

    Article  Google Scholar 

  • McGrew, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present, and future. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, test, and issues (2nd ed., pp. 136–181). New York, NY: Guilford Press.

    Google Scholar 

  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10.

    Google Scholar 

  • Middleton, H. (2002). Complex problem solving in a workplace setting. International Journal of Educational Research, 37, 67–84. https://doi.org/10.1016/S0883-0355(02)00022-8.

    Article  Google Scholar 

  • Milkovich, G. T., Newman, J. M., & Gerhart, B. (2013). Compensation (11th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Molnár, G., Greiff, S., & Csapó, B. (2013). Inductive reasoning, domain specific and complex problem solving: Relations and development. Thinking Skills and Creativity, 9, 35–45. https://doi.org/10.1016/j.tsc.2013.03.002.

    Article  Google Scholar 

  • Murphy, K. R. (1989). Is the relationship between cognitive ability and job performance stable over time? Human Performance, 2, 183–200. https://doi.org/10.1207/s15327043hup0203_3.

    Article  Google Scholar 

  • Murphy, K. R. (1996). Individual differences and behavior in organizations. San Francisco: Jossey-Bass.

    Google Scholar 

  • Muthén, L., & Muthén, B. (1998-2014). Mplus 7.1. [computer software]. Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • National Research Council (2012). Education for life and work: Developing transferable knowledge and skills in the 21st century. (J. W. Pellegrino, & M. L. Hilton, Eds.). Washington, DC: The National Academies Press.

  • Neal, D., & Rosen, S. (2000). Theories of the distribution of earnings. In A. B. Atkinson & F. Bourguignon (Eds.), Handbook of income distribution (Vol. 1, pp. 379–427). Amsterdam: Elsevier Science Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S157400560080010X.

    Google Scholar 

  • Nedelkoska, L., Patt, A., & Ederer, P. (2015). Learning by problem solving. Retrieved from http://ssrn.com/abstract=2673990

  • Neubert, J. C., Kretzschmar, A., Wüstenberg, S., & Greiff, S. (2014). Extending the assessment of complex problem solving to finite state automata—embracing heterogeneity. European Journal of Psychological Assessment, 31, 181–194. https://doi.org/10.1027/1015-5759/a000224.

    Article  Google Scholar 

  • Neubert, J. C., Mainert, J., Kretzschmar, A., & Greiff, S. (2015). The assessment of 21st century skills in industrial and organizational psychology: Complex and collaborative problem solving. Industrial and Organizational Psychology, 8, 238–268. https://doi.org/10.1017/iop.2015.14.

    Article  Google Scholar 

  • Ng, T. W. H., & Feldman, D. C. (2010). Human capital and objective indicators of career success: The mediating effects of cognitive ability and conscientiousness. Journal of Occupational and Organizational Psychology, 83, 207–235. https://doi.org/10.1348/096317909X414584.

    Article  Google Scholar 

  • Ng, T. W. H., Eby, L. T., Sorensen, K. L., & Feldman, D. C. (2005). Predictors of objective and subjective career success: A meta-analysis. Personnel Psychology, 58, 367–408. https://doi.org/10.1111/j.1744-6570.2005.00515.x.

    Article  Google Scholar 

  • OECD. (2012). Better skills, better jobs, better lives. In A strategic approach to skills policies. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2013a). OECD skills outlook 2013: First results from the survey of adult skills. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2013b). PISA 2012 assessment and analytical framework. Paris: OECD Publishing.

    Google Scholar 

  • OECD. (2014). PISA 2012 results: Creative problem solving. Paris: OECD Publishing.

    Google Scholar 

  • Ohlott, P. J. (2004). Job assignments. In C. D. McCauley & E. Van Velsor (Eds.), The Center for Creative Leadership handbook of leadership development (pp. 151–182) (2nd ed.)). San Francisco: Wiley.

    Google Scholar 

  • Osman, M. (2010). Controlling uncertainty: A review of human behavior in complex dynamic environments. Psychological Bulletin, 136, 65–86. https://doi.org/10.1037/a0017815.

    Article  PubMed  Google Scholar 

  • Raven, J. (2000). Psychometrics, cognitive ability, and occupational performance. Review of Psychology, 7, 51–74.

    Google Scholar 

  • Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales: Section 4. The standard progressive matrices. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Ree, M. J., Earles, J. A., & Teachout, M. S. (1994). Predicting job performance: Not much more than g. Journal of Applied Psychology, 79, 518–524. https://doi.org/10.1037/0021-9010.79.4.518.

    Article  Google Scholar 

  • Ree, M. J., Caretta, T. R., & Teachout, M. S. (2015). Pervasiveness of dominant general factors in organizational measurement. Industrial and Organizational Psychology: Perspectives on Science and Practice, 8, 409–427. https://doi.org/10.1017/iop.2015.16.

    Article  Google Scholar 

  • Reeve, C. L., Scherbaum, C., & Goldstein, H. (2015). Manifestations of intelligence: Expanding the measurement space to reconsider specific cognitive abilities. Human Resource Management Review, 25, 28–37.

    Google Scholar 

  • Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373. https://doi.org/10.1037/a0029315.

    Article  PubMed  Google Scholar 

  • Rocha, M. (2012). Transferable skills representations in a Portuguese college sample: Gender, age, adaptability and vocational development. European Journal of Psychology of Education, 27, 77–90. https://doi.org/10.1007/s10212-011-0067-4.

    Article  Google Scholar 

  • Rohrbach-Schmidt, D., & Hall, A. (2013). BIBB/BAuA employment survey 2012. In BIBB-FDZ data and methodological reports, Nr. 1/2013. Bonn, Germany: Federal Institute for Vocational Education and Training.

    Google Scholar 

  • Rönnlund, M., Sundström, A., & Nilsson, L. (2015). Interindividual differences in general cognitive ability from age 18 to age 65 years are extremely stable and strongly associated with working memory capacity. Intelligence, 53, 59–64.

    Google Scholar 

  • Sala, G., & Gobet, F. (2017). Does far transfer exist? Negative evidence from chess, music and working memory training. Current Directions in Psychological Science, 26, 515–520.

    PubMed  PubMed Central  Google Scholar 

  • Salgado, J., Anderson, N., Moscoso, S., Bertua, C., de Fruyt, F., & Rolland, J. P. (2003). A meta-analytic study of general mental ability validity for different occupations in the European community. Journal of Applied Psychology, 88, 1068–1081. https://doi.org/10.1037/0021-9010.88.6.1068.

    Article  PubMed  Google Scholar 

  • Scherbaum, C. A., Goldstein, H. W., Yusko, K. P., Ryan, R., & Hanges, P. J. (2012). Intelligence 2.0: Reestablishing a research program on g in I-O Psychology. Industrial and Organizational Psychology, 5, 128–148. https://doi.org/10.1111/j.1754-9434.2012.01419.x.

    Google Scholar 

  • Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124, 262–274. https://doi.org/10.1037/0033-2909.124.2.262.

    Article  Google Scholar 

  • Schmidt, F. L., & Hunter, J. (2004). General mental ability in the world of work: Occupational attainment and job performance. Journal of Personality and Social Psychology, 86, 162–173. https://doi.org/10.1037/0022-3514.86.1.162.

    Article  PubMed  Google Scholar 

  • Schneider, B. (1987). The people make the place. Personnel Psychology, 40, 437–454.

    Google Scholar 

  • Schneider, W. J., & Newman, D. A. (2015). Intelligence is multidimensional: Theoretical review and implications of specific cognitive abilities. Human Resource Management Review, 25, 12–27.

    Google Scholar 

  • Schneider, B., Goldstein, H. W., & Smith, D. B. (1995). The ASA framework: An update. Personnel Psychology, 48, 747–773.

    Google Scholar 

  • Schooler, C., Mulatu, M. S., & Oates, G. (1999). The continuing effects of substantively complex work on the intellectual functioning of older workers. Psychology and Aging, 14, 483–506. https://doi.org/10.1037/0882-7974.14.3.483.

    Article  PubMed  Google Scholar 

  • Schweizer, F., Wüstenberg, S., & Greiff, S. (2013). Validity of the MicroDYN approach: Complex problem solving predicts school grades beyond working memory capacity. Learning and Individual Differences, 24, 42–52. https://doi.org/10.1016/j.lindif.2012.12.011.

    Article  Google Scholar 

  • Sheridan, J. E., Slocum, J. W., & Buda, R. (1997). Factors influencing the probability of employee promotions: A comparative analysis of human capital, organization screening and gender/race discrimination theories. Journal of Business and Psychology, 11, 373-380. https://doi.org/10.1007/BF02195900

    Google Scholar 

  • Smart, E. L., Gow, A. J., & Deary, I. J. (2014). Occupational complexity and lifetime cognitive abilities. Neurology, 83, 2285–2291. https://doi.org/10.1212/WNL.0000000000001075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnleitner, P., Keller, U., Martin, R., & Brunner, M. (2013). Students’ complex problem-solving abilities: Their structure and relations to reasoning ability and educational success. Intelligence, 41, 289–305. https://doi.org/10.1016/j.intell.2013.05.002.

    Article  Google Scholar 

  • Sorjonen, K., Hemmingsson, T., Deary, I. J., & Melin, B. (2015). Mediation of the gravitational influence of intelligence on socio-economic outcomes. Intelligence, 53, 8–15. https://doi.org/10.1016/j.intell.2015.08.006.

    Article  Google Scholar 

  • Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem solving and intelligence: A meta-analysis. Intelligence, 53, 92–101. https://doi.org/10.1016/j.intell.2015.09.005.

    Article  Google Scholar 

  • Stadler, M. J., Becker, N., Greiff, S., & Spinath, F. M. (2015). The complex route to success: Complex problem-solving skills in the prediction of university success. Higher Education Research & Development, 35, 1–15. https://doi.org/10.1080/07294360.2015.1087387.

    Article  Google Scholar 

  • Tharenou, P., Latimer, S., & Conroy, D. (1994). How do you make it to the top? An examination of influences on women's and men's managerial advancement. Academy of Management Journal, 37, 899-931. https://doi.org/10.2307/256604.

    Google Scholar 

  • Thornton III, G. C., & Rupp, D. (2006). Assessment centers in human resource management: Strategies for prediction, diagnosis, and development. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Tomic, W. (1995). Training in inductive reasoning and problem solving. Contemporary Educational Psychology, 20, 483–490. https://doi.org/10.1006/ceps.1995.1036.

    Article  Google Scholar 

  • UNESCO Institute for Statistics. (2012). International standard classification of education: ISCED 2011. Montreal, Quebec: UNESCO Institute for Statistics.

    Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Seattle, WA: Hogrefe.

    Google Scholar 

  • Wiggins, J. S. (1973). Personality and prediction: Principles of personality assessment. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Wilk, S. L., Desmarais, L. B., & Sackett, P. R. (1995). Gravitation to jobs commensurate with ability: Longitudinal and cross-sectional tests. Journal of Applied Psychology, 80, 79–85. https://doi.org/10.1037/0021-9010.80.1.79.

    Article  Google Scholar 

  • Wilk, S. L., & Sackett, P. R. (1996). Longitudinal analysis of ability-job complexity fit and job change. Personnel Psychology, 49, 937–967. https://doi.org/10.1111/j.1744-6570.1996.tb02455.x.

    Google Scholar 

  • Williams, J. E., & McCord, D. M. (2006). Equivalence of standard and computerized versions of the Ravens progressive matrices test. Computers in Human Behavior, 22, 791–800.

    Google Scholar 

  • Wonderlic. (2002). Wonderlic personnel test and scholastic level exam: User’s manual. Libertyville, IL: Wonderlic, Inc.

    Google Scholar 

  • World Bank. (2015). PPP conversion factor, GDP (LCU per international $). Retrieved from http://data.worldbank.org/indicator/PA.NUS.PPP

  • Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving—more than reasoning? Intelligence, 40, 1–14. https://doi.org/10.1016/j.intell.2011.11.003.

    Article  Google Scholar 

  • Zaccaro, S. J., Connelly, S., Repchick, K. M., Daza, A. I., Young, M. C., Kilcullen, R. N., & Bartholomew, L. N. (2015). The influence of higher order cognitive capacities on leader organizational continuance and retention: The mediating role of developmental experiences. The Leadership Quarterly, 26, 342–358. https://doi.org/10.1016/j.leaqua.2015.03.007.

    Article  Google Scholar 

  • Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and Mcdonald’s ωH: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123–133. https://doi.org/10.1007/s11336-003-0974-7.

    Article  Google Scholar 

Download references

Funding

This research was funded by a grant from the Fonds National de la Recherche Luxembourg (ATTRACT “ASK21”), and the European Union (290683; LLLight’in’Europe). We gratefully acknowledge the assistance of Silvia Castellazzi, André Kretzschmar, Jonas Neubert, and Alexander Patt, who aided in collecting the data reported here.

Disclaimer

Samuel Greiff is one of two authors of the commercially available COMPRO-test that is based on the multiple complex systems approach and that employs the same assessment principle as MicroDYN, and he receives royalty fees for COMPRO. The COMPRO test was not used in this study, but its similarities to MicroDYN are substantial. For any research and educational purpose, a free version of MicroDYN is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Mainert.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mainert, J., Niepel, C., Murphy, K.R. et al. The Incremental Contribution of Complex Problem-Solving Skills to the Prediction of Job Level, Job Complexity, and Salary. J Bus Psychol 34, 825–845 (2019). https://doi.org/10.1007/s10869-018-9561-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10869-018-9561-x

Keywords