Skip to main content
Log in

Complementary Variable- and Person-Centered Approaches to the Dimensionality of Psychometric Constructs: Application to Psychological Wellbeing at Work

Journal of Business and Psychology Aims and scope Submit manuscript

Abstract

Purpose

This study illustrates complementary variable- and person-centered approaches allowing for a more complete investigation of the dimensionality of psychometric constructs. Psychometric measures often assess conceptually related facets of global overarching constructs based on the implicit or explicit assumption that these overarching constructs exist as global entities including conceptually related specificities mapped by the facets. Proper variable- and person-centered methodologies are required to adequately reflect the dimensionality of these constructs.

Design/Methodology/Approach

We illustrate these approaches using employees’ (N = 1077) ratings of their psychological wellbeing at work.

Findings

The results supported the added value of the variable-centered approach proposed here, showing that employees’ ratings of their own wellbeing simultaneously reflect a global overarching wellbeing construct, together with a variety of specific wellbeing dimensions. Similarly, the results show that anchoring person-centered analyses into these variable-centered results helps to achieve a more precise depiction of employees’ wellbeing profiles.

Implications

The variable-centered bifactor exploratory structural equation modeling (ESEM) framework provides a way to fully explore these sources of psychometric multidimensionality. Similarly, whenever constructs are characterized by the co-existence of overarching constructs with specific dimensions, it becomes important to properly disaggregate these two components in person-centered analyses. In this context, person-centered analyses need to be clearly anchored in the results of preliminary variable-centered analyses.

Originality/Value

Substantively, this study proposes an improved representation of employees’ wellbeing at work. Methodologically, this study aims to pedagogically illustrate the application of recent methodological innovations to organizational researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. This partitioning is made possible by the orthogonality of the factors, which forces the covariance shared among all items to be fully absorbed into the G-factor, while the S-factors represent the covariance shared among a subset of items but not with the others. Similar models in which the specific factors are allowed to correlate thus allow some of the variance shared among multiple sets of items to be modeled separately from the global factor, importantly changing the meaning of the model. Such non-orthogonal models are typically used to incorporate methodological controls in a model rather than to estimate meaningful G- and S-Factors. In one such example, the global factor has been proposed to control for responses tendencies shared across all items (Podsakoff et al. 2003), albeit with limited success based on the demonstration that meaningful information was still absorbed into this global “method” factor (Richardson et al. 2009). More typically, this approach is used to represent a global trait factor assessed by multiple sources of information (i.e., multi-trait-multi-method) represented by the specific factors (Eid 2000).

  2. The person-centered approach presented in the present study focuses on latent profile analyses rather than more common cluster analyses. Readers interested in a comparison of both methods are referred to Meyer and Morin (2016), Morin et al. (2011), and Vermunt and Magidson (2002).

References

  • Abou-Shouk, M., Megicks, P., & Lim, W. M. (2013). Perceived benefits and E-commerce adoption by SME travel agents in developing countries: Evidence from Egypt. Journal of Hospitality & Tourism Research, 37, 490–515.

    Article  Google Scholar 

  • Allen, N. J., & Meyer, J. P. (1997). Commitment in the workplace: Theory, research and application. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Ambrose, M. L., & Arnaud, A. (2005). Are procedural justice and distributive justice conceptually distinct? In J. Greenberg & J. A. Colquitt (Eds.), The handbook of organizational justice (pp. 59–84). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Ambrose, M. L., Wo, D. X., & Griffith, M. D. (2015). Overall justice: Past, present, and future. In R. Cropanzano & M. L. Ambrose (Eds.), The Oxford handbook of justice in the workplace (pp. 109–135). Oxford: New York.

    Google Scholar 

  • Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation Modeling, 12, 411–434.

    Article  Google Scholar 

  • Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.

    Article  Google Scholar 

  • Asparouhov, T., Muthén, B. O., & Morin, A. J. S. (2015). Bayesian Structural equation modeling with cross-loadings and residual covariances. Journal of Management, 41, 1561–1577.

    Article  Google Scholar 

  • Barbier, M., Peters, S., & Hansez, I. (2009). Measuring positive and negative occupational states (PNOSI): structural confirmation of a new Belgian Tool. Psychologica Belgica, 49, 227–247.

    Article  Google Scholar 

  • Bauer, D. J. (2007). Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research, 42, 757–786.

    Article  Google Scholar 

  • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models over-extraction of latent trajectory classes. Psychological Methods, 8, 338–363.

    Article  PubMed  Google Scholar 

  • Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29.

    Article  PubMed  Google Scholar 

  • Biétry, F., & Creusier, J. (2015). Le bien-être au travail: les apports d’une étude par profils. Relations industrielles/Industrial Relations, 70, 11–35.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Book  Google Scholar 

  • Boudrias, J. S., Desrumaux, P., Gaudreau, P., Nelson, K., Brunet, L., & Savoie, A. (2011). Modeling the experience of psychological health at work: Personal resources, social-organizational resources, and job demands. International Journal of Stress Management, 18, 372–395.

    Article  Google Scholar 

  • Boudrias, J. S., Gaudreau, P., & Laschinger, H. K. (2004). Testing the structure of psychological empowerment. Educational and Psychological Measurement, 64, 861–877.

    Article  Google Scholar 

  • Boudrias, J. S., Morin, A. J. S., & Lajoie, D. (2014). Directionality of the associations between psychological empowerment and behavioural involvement: A longitudinal autoregressive cross-lagged analysis. Journal of Occupational & Organizational Psychology, 87, 437–463.

    Article  Google Scholar 

  • Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.

    Article  Google Scholar 

  • Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80, 796–846.

    Article  PubMed  Google Scholar 

  • Cass, M. H., Siu, O. L., Faragher, E. B., & Cooper, C. L. (2003). A meta-analysis of the relationship between job satisfaction and employee health in Hong Kong. Stress and Health, 19, 79–95.

    Article  Google Scholar 

  • Chan, D. W. (2009). Orientations to happiness and subjective well-being among Chinese prospective and in-service teachers in Hong Kong. Educational Psychology, 29, 139–151.

    Article  Google Scholar 

  • Chemolli, E., & Gagné, M. (2014). Evidence against the continuum structure underlying motivation measures derived from self-determination theory. Psychological Assessment, 26, 575–585.

    Article  PubMed  Google Scholar 

  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement. Structural Equation Modeling, 14, 464–504.

    Article  Google Scholar 

  • Chen, F., Bollen, K. A., Paxton, P., Curran, P. J., & Kirby, J. B. (2001). Improper solutions in structural models: Causes, consequences, and strategies. Sociological Methods & Research, 29, 468–508.

    Article  Google Scholar 

  • Chen, Q., Kwok, O.-M., Luo, W., & Willson, V. L. (2010). The impact of ignoring a level of nesting structure in multilevel growth mixture models: A Monte Carlo study. Structural Equation Modeling, 17, 570–589.

    Article  Google Scholar 

  • Chen, F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–255.

    Article  PubMed  Google Scholar 

  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.

    Article  Google Scholar 

  • Colquitt, J. A. (2001). On the dimensionality of organizational justice: A construct validation of a measure. Journal of Applied Psychology, 86, 386–400.

    Article  PubMed  Google Scholar 

  • Colquitt, J. A., & Shaw, J. C. (2005). How should organizational justice be measured. Handbook of Organizational Justice, 1, 113–152.

    Google Scholar 

  • Dagenais-Desmarais, V., & Savoie, A. (2012). What is psychological well-being really? A grassroots approach from the organizational science. Journal of Happiness Studies, 13, 659–684.

    Article  Google Scholar 

  • Diener, E. (2000). Subjective well-being: The science of happiness and a proposal for a national index. American Psychologist, 55, 34–43.

    Article  PubMed  Google Scholar 

  • Eid, M. (2000). Multitrait-multimethod model with minimal assumptions. Psychometrika, 65, 241–261.

    Article  Google Scholar 

  • Finney, S. J., & DiStefano, C. (2013). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 439–492). Greenwich, CO: IAP.

    Google Scholar 

  • Furnham, A., Guenole, N., Levine, S. Z., & Chamorro-Premuzic, T. (2013). The NEO Personality Inventory-Revised: Factor structure and gender invariance from exploratory structural equation modeling analyses in a high-stakes setting. Assessment, 20, 14–23.

    Article  PubMed  Google Scholar 

  • Furtner, M. R., Rauthmann, J. F., & Sachse, P. (2015). Unique self-leadership: A bifactor model approach. Leadership, 11, 105–125.

    Article  Google Scholar 

  • Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26, 331–362.

    Article  Google Scholar 

  • Gallagher, M. W., Lopez, S. J., & Preacher, K. J. (2009). The hierarchical structure of well-being. Journal of Personality, 77, 1025–1050.

    Article  PubMed  Google Scholar 

  • Gignac, G. E. (2006). A confirmatory examination of the factor structure of the multidimensional aptitude battery: Contrasting oblique, higher-order, and nested factor models. Educational and Psychological Measurement, 66, 136–145.

    Article  Google Scholar 

  • Gilbert, M.-H., Dagenais-Desmarais, V., & Savoie, A. (2011). Validation d’une mesure de santé psychologique au travail [Validation of a psychological health measure at work]. European Review of Applied Psycholgy, 61, 195–203.

    Article  Google Scholar 

  • Gonzalez-Roma, V., Schaufeli, W., Bakker, A., & Lloret, S. (2006). Burnout and work engagement: Independent factors or opposite poles. Journal of Vocation Behavior, 68, 165–174.

    Article  Google Scholar 

  • Guay, F., Morin, A., Litalien, D., Valois, P., & Vallerand, R. J. (2015). Application of exploratory structural equation modeling to evaluate the academic motivation scale. The Journal of Experimental Education, 83, 51–82.

    Article  Google Scholar 

  • Hauenstein, N. M., McGonigle, T., & Flinder, S. W. (2001). A meta-analysis of the relationship between procedural justice and distributive justice: Implications for justice research. Employee Responsibilities and Rights Journal, 13, 39–56.

    Article  Google Scholar 

  • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36–53.

    Article  PubMed  Google Scholar 

  • Huppert, F. A., & So, T. T. (2013). Flourishing across Europe: Application of a new conceptual framework for defining well-being. Social Indicators Research, 110, 837–861.

    Article  PubMed  Google Scholar 

  • Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76, 537–549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, S., Cooper, C., Cartwright, S., Donald, I., Taylor, P., & Millet, C. (2005). The experience of work-related stress across occupations. Journal of Managerial Psychology, 20, 178–187.

    Article  Google Scholar 

  • Kam, C., Morin, A. J. S., Meyer, J. P., & Topolnytsky, L. (2016). Are commitment profiles stable and predictable? A latent transition analysis. Journal of Management. doi:10.1177/0149206313503010.

    Google Scholar 

  • Keyes, C. (2005). Mental illness and/or mental health? Investigating axioms of the complete state model of health. Journal of Consulting and Clinical Psychology, 73, 539–548.

    Article  PubMed  Google Scholar 

  • Keyes, C. L., Shmotkin, D., & Ryff, C. D. (2002). Optimizing well-being: The empirical encounter of two traditions. Journal of Personality and Social Psychology, 82, 1007–1022.

    Article  PubMed  Google Scholar 

  • Lau, P. S. Y., Yuen, M., & Chan, R. M. C. (2005). Do demographic characteristics make a difference in teacher burnout in Hong Kong secondary schools? Social Indicators Research, 71, 491–516.

    Article  Google Scholar 

  • Lind, E. A. (2001). Fairness heuristic theory: Justice judgments as pivotal cognitions in organizational relations. In J. Greenberg & R. Cropanzano (Eds.), Advances in organizational justice (pp. 56–88). Stanford: Stanford, CA.

    Google Scholar 

  • Litalien, D., Guay, F., & Morin, A. J. S. (2015). Motivation for Ph.D. studies: Scale development and validation. Learning and Individual Differences, 41, 1–13.

    Article  Google Scholar 

  • Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.

    Article  Google Scholar 

  • Loerbroks, A., Meng, H., Chen, M. L., Herr, R., Angerer, P., & Li, J. (2014). Primary school teachers in China: Associations of organizational justice and effort–reward imbalance with burnout and intentions to leave the profession in a cross-sectional sample. International Archives of Occupational and Environmental Health, 87, 695–703.

    Article  PubMed  Google Scholar 

  • López, J. M. O., Bolaño, C. C., Mariño, M. J. S., & Pol, E. V. (2010). Exploring stress, burnout, and job dissatisfaction in secondary school teachers. International Journal of Psychology and Psychological Therapy, 10, 107–123.

    Google Scholar 

  • Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.

    Article  PubMed  Google Scholar 

  • Lubke, G., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, criterion effects, and class-specific parameters. Structural Equation Modeling, 14, 26–47.

    Article  Google Scholar 

  • Marsh, H. W., Hau, K.-T., & Grayson, D. (2005). Goodness of fit evaluation in structural equation modeling. In A. Maydeu-Olivares & J. McArdle (Eds.), Contemporary psychometrics. A Festschrift for Roderick P. McDonald. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to cutoff values for fit indexes and dangers in overgeneralizing Hu & Bentler’s (1999). Structural Equation Modeling, 11, 320–341.

    Article  Google Scholar 

  • Marsh, H. W., Liem, G. A. D., Martin, A. J., Morin, A. J. S., & Nagengast, B. (2011a). Methodological measurement fruitfulness of exploratory structural equation model: New approaches to issues in motivation and engagement. Journal of Psychoeducational Assessment, 29, 322–346.

    Article  Google Scholar 

  • Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. (2010). A new look at the big-five factor structure through exploratory structural equation modeling. Psychological Assessment, 22, 471–491.

    Article  PubMed  Google Scholar 

  • Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J. S., & Von Davier, M. (2013). Why item parcels are (almost) never appropriate: Two wrongs do not make a right—Camouflaging misspecification with item parcels in CFA models. Psychological Methods, 18, 257–284.

    Article  PubMed  Google Scholar 

  • Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009a). Latent profile analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to the internal/external frame of reference model. Structural Equation Modeling, 16, 1–35.

    Article  Google Scholar 

  • Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014). Exploratory structural equation modelling: An integration of the best features of exploratory and confirmatory factor analyses. Annual Review of Clinical Psychology, 10, 85–110.

    Article  PubMed  Google Scholar 

  • Marsh, H. W., Muthén, B., Asparouhov, A., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009b). Exploratory structural equation modeling, integrating CFA and EFA: Application to students’ evaluations of university teaching. Structural Equation Modeling, 16, 439–476.

    Article  Google Scholar 

  • Marsh, H. W., Nagengast, B., Morin, A. J. S., Parada, R. H., Craven, R. G., & Hamilton, L. R. (2011b). Construct validity of the multidimensional structure of bullying and victimization: An application of exploratory structural equation modeling. Journal of Educational Psychology, 103, 701–732.

    Article  Google Scholar 

  • Massé, R., Poulin, C., Dassa, C., Lambert, J., Bélair, S., & Battaglini, A. (1998). The structure of mental health: Higher-order confirmatory factor analyses of psychological distress and well-being measures. Social Indicators Research, 45, 475–504.

    Article  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Book  Google Scholar 

  • Mészáros, V., Ádám, S., Szabó, M., Szigeti, R., & Urbán, R. (2014). The bifactor model of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS)—An alternative measurement model of burnout. Stress & Health, 30(82), 88.

    Google Scholar 

  • Meyer, J. P., & Morin, A. J. S. (2016). A person-centered approach to commitment research: Theory, research, and methodology. Journal of Organizational Behavior. doi:10.1002/job.2085.

    Google Scholar 

  • Meyer, J. P., Morin, A. J. S., & Vandenberghe, C. (2015). Dual commitment to the organization and supervisor: A person-centered approach. Journal of Vocational Behavior, 88, 56–72.

    Article  Google Scholar 

  • Millsap, R. E. (2011). Statistical approaches to measurement invariance. NewYork: Taylor & Francis.

    Google Scholar 

  • Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2016a). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. Structural Equation Modeling, 23, 116–139.

    Article  Google Scholar 

  • Morin, A. J. S., & Maïano, C. (2011). Cross-validation of the short form of the physical self-inventory (PSI-S) using exploratory structural equation modeling (ESEM). Psychology of Sport and Exercise, 12, 540–554.

    Article  Google Scholar 

  • Morin, A. J. S., Maïano, C., Nagengast, B., Marsh, H. W., Morizot, J., & Janosz, M. (2011a). Growth mixture modeling of adolescents trajectories of anxiety: The impact of untested invariance assumptions on substantive interpretations. Structural Equation Modeling, 18, 613–648.

    Article  Google Scholar 

  • Morin, A. J. S., & Marsh, H. W. (2015). Disentangling shape from levels effects in person-centered analyses: An illustration based on University teacher multidimensional profiles of effectiveness. Structural Equation Modeling, 22, 39–59.

    Article  Google Scholar 

  • Morin, A. J. S., Marsh, H. W., & Nagengast, B. (2013). Exploratory structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 395–436). Charlotte, NC: Information Age Publishing Inc.

    Google Scholar 

  • Morin, A. J. S., Meyer, J. P., Creusier, J., & Biétry, F. (2016b). Multiple-group analysis of similarity in latent profile solutions. Organizational Research Methods. doi:10.1177/1094428115621148.

    Google Scholar 

  • Morin, A. J. S., Morizot, J., Boudrias, J.-S., & Madore, I. (2011b). A multifoci person-centered perspective on workplace affective commitment: A latent profile/factor mixture Analysis. Organizational Research Methods, 14, 58–90.

    Article  Google Scholar 

  • Morin, A. J. S., Scalas, L. F., & Marsh, H. W. (2015). Tracking the elusive actual-ideal discrepancy model within latent subpopulations. Journal of Individual Differences, 36, 65–72.

    Article  Google Scholar 

  • Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence, 41, 407–422.

    Article  Google Scholar 

  • Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8, 369–377.

    Article  PubMed  Google Scholar 

  • Muthén, L. K., & Muthén, B. (2014). Mplus user’s guide. Los Angeles: Muthén & Muthén.

    Google Scholar 

  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.

    Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling. Structural Equation Modeling, 14, 535–569.

    Article  Google Scholar 

  • Page, K. M., & Vella-Brodrick, D. A. (2009). The ‘what’, ‘why’ and ‘how’ of employee well-being: A new model. Social Indicators Research, 90, 441–458.

    Article  Google Scholar 

  • Petras, H., & Masyn, K. (2010). General growth mixture analysis with antecedents and consequences of change. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 69–100). New York: Springer.

    Chapter  Google Scholar 

  • Peugh, J., & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: A Monte Carlo simulation. Structural Equation Modeling, 20, 616–639.

    Article  Google Scholar 

  • Pisanti, R., Gagliardi, M. P., Razzino, S., & Bertini, M. (2003). Occupational stress and wellness among Italian secondary school teachers. Psychology and Health, 18, 523–536.

    Article  Google Scholar 

  • Podsakoff, P., MacKenzie, S., Lee, J., & Podsakoff, N. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88, 879–903.

    Article  PubMed  Google Scholar 

  • Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667–696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reise, S. P., Moore, T. M., & Maydeu-Olivares, A. (2011). Targeted bifactor rotations and assessing the impact of model violations on the parameters of unidimensional and bifactor models. Educational and Psychological Measurement, 71, 684–711.

    Article  Google Scholar 

  • Richardson, H. E., Simmering, M. J., & Sturman, M. C. (2009). A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organizational Research Methods, 12, 762–800.

    Article  Google Scholar 

  • Rindskopf, D., & Rose, T. (1988). Some theory and application of confirmatory second-order factor analyses. Multivariate Behavioral Research, 23, 51–67.

    Article  PubMed  Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2001). On happiness and human potentials: A review of research on hedonic and eudaimonic well-being. Annual Review of Psychology, 52, 141–166.

    Article  PubMed  Google Scholar 

  • Ryff, C. D. (1989). Happiness is everything, or is it? Explorations on the meaning of psychological wellbeing. Journal of Personality and Social Psychology, 57, 1069–1081.

    Article  Google Scholar 

  • Ryff, C. D. (2014). Psychological well-being revisited: Advances in science and practice. Psychotherapy and Psychosomatics, 83, 10–28.

    Article  PubMed  Google Scholar 

  • Ryff, C. D., & Keyes, C. L. (1995). The structure of psychological well-being revisited. Journal of Personality and Social Psychology, 69, 719–727.

    Article  PubMed  Google Scholar 

  • Ryff, C. D., & Singer, B. H. (2006). Best news yet on the six-factor model of well-being. Social Science Research, 35, 1103–1119.

    Article  Google Scholar 

  • Sass, D. A., & Schmitt, T. A. (2010). A comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 73–103.

    Article  PubMed  Google Scholar 

  • Schmitt, T. A., & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71, 95–113.

    Article  Google Scholar 

  • Seibert, S. E., Wang, G., & Courtright, S. (2011). Antecedents and consequences of psychological and team empowerment in organizations. Journal of Applied Psychology, 96, 981–1003.

    Article  PubMed  Google Scholar 

  • Siegrist, J. (1996). Adverse health effects of high-effort/low-reward conditions. Journal of Occupational Health Psychology, 1, 27–41.

    Article  PubMed  Google Scholar 

  • Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66, 563–576.

    Article  Google Scholar 

  • Solinger, O. N., Van Olffen, W., Roe, R. A., & Hofmans, J. (2013). On becoming (un)committed: A taxonomy and test of newcomer onboarding scenarios. Organization Science, 24, 1640–1661.

    Article  Google Scholar 

  • Sousa-Poza, A., & Sousa-Poza, A. A. (2000). Well-being at work: A cross-national analysis of the levels and determinants of job satisfaction. The Journal of Socio-economics, 29, 517–538.

    Article  Google Scholar 

  • Spreitzer, G. M. (1995). Psychological empowerment in the workplace: Dimensions, measurement, and validation. Academy of Management Journal, 38, 1442–1465.

    Article  Google Scholar 

  • Springer, K. W., Hauser, R. M., & Freese, J. (2006). Bad news indeed for Ryff’s six-factor model of well-being. Social Science Research, 35, 1120–1131.

    Article  Google Scholar 

  • Steinley, D., & McDonald, R. P. (2007). Examining factor scores distributions to determine the nature of latent spaces. Multivariate Behavioral Research, 42, 133–156.

    Article  PubMed  Google Scholar 

  • Suh, E. M., & Koo, J. (2008). Comparing subjective well-being across cultures and nations: the “what” and “why” questions. In M. Eid & R. J. Larsen (Eds.), The science of subjective well-being (pp. 414–430). New York: Guildford.

    Google Scholar 

  • Tein, J.-Y., Coxe, S., & Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling, 20, 640–657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Titus, L. S. P., & Ora, K. W. Y. (2005). Teacher education. In M. Bray & R. Coo (Eds.), Education and society in Hong Kong and Macao: Comparative perspectives on continuity and change (pp. 73–85). Hong Kong: Comparative Education Research Center, The University of Hong Kong.

    Chapter  Google Scholar 

  • Tofighi, D., & Enders, C. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). Charlotte, NC: Information Age.

    Google Scholar 

  • Tolvanen, A. (2007). Latent growth mixture modeling: A simulation study. PhD dissertation, Department of Mathematics, University of Jyväskylä, Jyväskylä, Finland.

  • Vercambre, M. N., Brosselin, P., Gilbert, F., Nerrière, E., & Kovess-Masféty, V. (2009). Individual and contextual covariates of burnout. BMC Public Health, 9, 333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. Hagenaars & A. McCutcheon (Eds.), Applied latent class models (pp. 89–106). New York: Cambridge.

    Chapter  Google Scholar 

  • Warr, P. (1990). The measurement of well-being and other aspects of mental health. Journal of Occupational Psychology, 63, 193–210.

    Article  Google Scholar 

  • Yang, C. (2006). Evaluating latent class analyses in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 1090–1104.

    Article  Google Scholar 

  • Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Los Angeles: University of California.

    Google Scholar 

  • Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by a GRF fund from the Research Grants Council of Hong Kong SAR (Ref. No.: 843911) awarded to the first, third, and fourth authors. Preparation of this article was also supported by a research grant from the Australian Research Council (LP140100100) awarded to the first and third authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre J. S. Morin.

Additional information

Alexandre J. S. Morin and Jean-Sébastien Boudrias have contributed equally to this article and their order was determined at random: both should be considered first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin, A.J.S., Boudrias, JS., Marsh, H.W. et al. Complementary Variable- and Person-Centered Approaches to the Dimensionality of Psychometric Constructs: Application to Psychological Wellbeing at Work. J Bus Psychol 32, 395–419 (2017). https://doi.org/10.1007/s10869-016-9448-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10869-016-9448-7

Keywords

Navigation