Skip to main content

The Technology Effect: How Perceptions of Technology Drive Excessive Optimism

Abstract

Purpose

We propose that constant exposure to advances in technology has resulted in an implicit association between technology and success that has conditioned decision makers to be overly optimistic about the potential for technology to drive successful outcomes. Three studies examine this phenomenon and explore the boundaries of this “technology effect.”

Design/Methodology/Approach

In Study 1, participants (N = 147) made simulated investment decisions where the information about technology was systematically varied. In Study 2 (N = 143), participants made decisions in a resource dilemma where technology was implicated in determining the amount of a resource available for harvest. Study 3 (N = 53 and N = 60) used two implicit association tests to examine the assumption that people associate technology with success.

Findings

Results supported our assumption about an implicit association between technology and success, as well as a “technology effect” bias in decision making. Signals of high performance trigger the effect, and the effect is more likely when the technology invoked is unfamiliar.

Implications

Excessive optimism that technology will result in success can have negative consequences. Individual investment decisions, organizational decisions to invest in R&D, and societal decisions to explore energy and climate change solutions might all be impacted by biased beliefs about the promise of technology.

Originality/Value

We are the first to systematically examine the optimistic bias in the technology effect, its scope, and boundaries. This research raises decision makers’ awareness and initiates research examining how the abstract notion of technology can influence perceptions of technological advances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    Overconfidence is conceptualized both as certainty that one’s prediction (success or failure) is accurate (e.g., Klayman et al. 1999), and as certainty that a positive or successful outcome is more likely than it actually is (e.g., Malmendier and Tate 2005). The latter is akin to definitions of overoptimism (e.g., Jager et al. 2002) and is the type of overconfidence focused on in this manuscript. Hereafter, we refer to this as overoptimism.

  2. 2.

    Moore’s law is a description of the long-term trend that integrated circuits have tended to double in capacity every 2 years. This is most commonly linked to computer processing speed by the general public but relates also to things such as memory capacity and the number of pixels in digital cameras.

References

  1. Alter, A. L., & Oppenheimer, D. M. (2006). Predicting short-term stock fluctuations by using processing fluency. Proceedings of the National Academy of Sciences, 103(24), 9369.

    Article  Google Scholar 

  2. Baca, S. P., Garbe, B. L., & Weiss, R. A. (2000). The rise of sector effects in major equity markets. Financial Analysts Journal, 56(5), 34–40.

    Article  Google Scholar 

  3. Bain, R. (1937). Technology and state government. American Sociological Review, 2(6), 860–874.

    Article  Google Scholar 

  4. Barber, B. M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. Quarterly Journal of Economics, 116(1), 261–292.

    Article  Google Scholar 

  5. Borges, B., Goldstein, D. G., Ortmann, A., & Gigerenzer, G. (1999). Can ignorance beat the stock market. In G. Gigerenzer, P. M. Todd, & the ABC Research Group (Eds.), Simple heuristicsthat make us smart (pp. 59–72). New York: Oxford University.

  6. Burrill, S. G. (2002). Biotech 2002: The 16th Annual Report on the Industry. San Francisco: Burrill & Company.

    Google Scholar 

  7. Burrill, S. G. (2011). Biotech 2011 life sciences: 25 years : Looking back to see ahead. San Francisco: Burrill & Company.

    Google Scholar 

  8. Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367.

    Article  Google Scholar 

  9. Camerer, C., & Lovallo, D. (1999). Overconfidence and excess entry: An experimental approach. The American Economic Review, 89(1), 306–318.

    Article  Google Scholar 

  10. Chaiken, S. (1980). Heuristic versus systematic information processing and the use of source versus message cues in persuasion. Journal of Personality and Social Psychology, 39(5), 752–766.

    Article  Google Scholar 

  11. Chaiken, S., Liberman, A., & Eagly, A. H. (1989). Heuristic and systematic information processing within and beyond the persuasion context. In J. S. Uleman & J. A. Bargh (Eds.), Unintended thought (pp. 212–252). New York: Guilford Press.

    Google Scholar 

  12. Chandy, R. K., Prabhu, J. C., & Antia, K. D. (2003). What will the future bring? Dominance, technology expectations, and radical innovation. Journal of Marketing, 67(3), 1–18.

    Article  Google Scholar 

  13. Costa-Font, J., Mossialos, E., & Rudisill, C. (2009). Optimism and the perceptions of new risks. Journal of Risk Research, 12(1), 27–41.

    Article  Google Scholar 

  14. Einhorn, H. J., & Hogarth, R. M. (1975). Unit weighting schemes for decision making. Organizational Behavior and Human Performance, 13(2), 171–192.

    Article  Google Scholar 

  15. Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.

    Article  PubMed  Google Scholar 

  16. Feldman, J. M., & Lynch, J. G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3), 421.

    Article  Google Scholar 

  17. Golder, P. N., & Tellis, G. J. (1993). Pioneer advantage: Marketing logic or marketing legend? Journal of Marketing Research, 30(2), 158–170.

    Article  Google Scholar 

  18. Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychological Review, 102(1), 4–27.

    Article  PubMed  Google Scholar 

  19. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480.

    Article  PubMed  Google Scholar 

  20. Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the implicit association test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216.

    Article  PubMed  Google Scholar 

  21. Greenwald, A. G., Poelman, T. A., Ulmann, E. L., & Banaji, M. R. (2009). Understanding and using the implicit association test: III. Meta-analysis of predictive validity. Journal of Personality and Social Psychology, 97(1), 17–41.

    Article  PubMed  Google Scholar 

  22. Griffin, R., & Kacmar, K. M. (1991). Laboratory research in management: Misconceptions and missed opportunities. Journal of Organizational Behavior, 12(4), 301–311.

    Article  Google Scholar 

  23. Hamilton, D. P. (2004). Biotech’s dismal bottom line: More than $40 billion in losses. Wall Street Journal, 20, A1–A8. Retrieved from http://www.wsj.com/articles/SB108499868760716023.

  24. Hekman, D., Aquino, K., Owens, B., Mitchell, T., Schilpzand, P., & Leavitt, K. (2010). An examination of whether and how racial and gender biases influence customer satisfaction ratings. Academy of Management Journal, 53(2), 238–264.

    Article  Google Scholar 

  25. Herman, J. L., Stevens, M. J., Bird, A., Mendenhall, M., & Oddou, G. (2010). The tolerance for ambiguity scale: Towards a more refined measure for international management research. International Journal of Intercultural Relations, 34(1), 58–65.

    Article  Google Scholar 

  26. Hoeffler, S. (2003). Measuring preferences for really new products. Journal of Marketing Research, 40(4), 406–420.

    Article  Google Scholar 

  27. Hossain, T., & Morgan, J. (2006). …plus shipping and handling: Revenue (non) equivalence in field experiments on ebay. The B.E. Journal of Economic Analysis & Policy, 5(2), 1–27.

    Google Scholar 

  28. Huberman, G. (2001). Familiarity breeds investment. Review of Financial Studies, 14(3), 659–680.

    Article  Google Scholar 

  29. Ilgen, D. R. (1986). Laboratory research: A question of when, not if. In E. A. Locke (Ed.), Generalizing from laboratory to field settings (pp. 257–267). Lexington: Lexington Books.

    Google Scholar 

  30. Jackson, D. N. (1994). Jackson personality inventory—Revised manual. Port Heron: Sigma Assessment Systems Inc.

    Google Scholar 

  31. Jager, W., Janssen, M. A., & Vlek, C. A. J. (2002). How uncertainty stimulates over-harvesting in a resource dilemma: Three Process Explanations. Journal of Environmental Psychology, 22(3), 247–263.

    Article  Google Scholar 

  32. John, L., Acquisti, A., & Loewenstein, G. (2009). The best of strangers: Context dependent willingness to divulge personal information. Available at http://ssrn.com/abstract=1430482. Accessed 1 Jan 2011.

  33. Keh, H. T., Foo, M. D., & Lim, B. C. (2002). Opportunity evaluation under risky conditions: The cognitive processes of entrepreneurs. Entrepreneurship Theory and Practice, 27(2), 125–148.

    Article  Google Scholar 

  34. Klayman, J., Soll, J. B., González-Vallejo, C., & Barlas, S. (1999). Overconfidence: It depends on how, what, and whom you ask. Organizational Behavior and Human Decision Processes, 79(3), 216–247.

    Article  PubMed  Google Scholar 

  35. Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV: What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59–102). New York: Guilford.

    Google Scholar 

  36. Leavitt, K., Fong, C. T., & Greenwald, A. G. (2011). Asking about well-being gets you half an answer: Intraindividual processes of implicit and explicit job attitudes. Journal of Organizational Behavior, 32(4), 672–687.

    Article  Google Scholar 

  37. Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic Management Journal, 14(S2), 95–112.

    Article  Google Scholar 

  38. Lowe, R. A., & Ziedonis, A. A. (2006). Overoptimism and the performance of entrepreneurial firms. Management Science, 52(2), 173–186.

    Article  Google Scholar 

  39. Malmendier, U., & Tate, G. (2005). CEO overconfidence and corporate investment. The Journal of Finance, 60(6), 2661–2700.

    Article  Google Scholar 

  40. Moore, G. E. (1965). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1), 82–85.

    Article  Google Scholar 

  41. Muthitcharoen, A., Palvia, P. C., & Grover, V. (2011). Building a model of technology preference: The case of channel choices. Decision Sciences, 42(1), 205–237.

    Article  Google Scholar 

  42. Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Cambridge: Belknap Press.

    Google Scholar 

  43. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2005). Understanding and using the implicit association test: II. Method variables and construct validity. Personality and Social Psychology Bulletin, 31, 166–180.

    Article  PubMed  Google Scholar 

  44. Pinch, T. J., & Bijker, W. (1987). The social construction of facts and artifacts. In D. G. Johnson & J. M. Wetmore (Eds.), Technology and society: Building our sociotechnical future (pp. 107–140). Cambridge: The MIT Press.

    Google Scholar 

  45. Pisano, G. P. (2006). Science business: The promise, the reality, and the future of biotech. Boston: Harvard Business School Press.

    Google Scholar 

  46. Reynolds, S., Leavitt, K., & Decelles, K. (2010). Automatic ethics: The effects of implicit assumptions and contextual cues on moral behavior. Journal of Applied Psychology, 95, 752–760.

    Article  PubMed  Google Scholar 

  47. Rindova, V. P., & Petkova, A. P. (2007). When is a new thing a good thing? Technological change, product form design, and perceptions of value for product innovations. Organization Science, 18(2), 217–232.

    Article  Google Scholar 

  48. Rumelt, R. P. (1974). Strategy, structure, and economic performance. Cambridge: Harvard University Business School Press.

    Google Scholar 

  49. Silverstein, S. (2009). Health care information technology, hospital responsibilities, and joint commission standards. JAMA: The Journal of the American Medical Association, 302(4), 382.

    Article  PubMed  Google Scholar 

  50. Simon, M., & Houghton, S. M. (2003). The relationship between overconfidence and the introduction of risky products: Evidence from a field study. Academy of Management Journal, 46(2), 139–150.

    Article  Google Scholar 

  51. Soll, J. B. (1996). Determinants of overconfidence and miscalibration: The roles of random error and ecological structure. Organizational Behavior and Human Decision Processes, 65(2), 117–137.

    Article  Google Scholar 

  52. Stiegler, B. (1998). Technics and time: The fault of epimetheus. Stanford: Stanford University Press.

    Google Scholar 

  53. Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. New York: Basic Books.

    Google Scholar 

  54. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 207–232.

    Article  Google Scholar 

  55. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124.

    Article  PubMed  Google Scholar 

  56. Uhlmann, E. L., Leavitt, K., Menges, J. I., Koopman, J., Howe, M., & Johnson, R. E. (2012). Getting explicit about the implicit: A taxonomy of implicit measures and guide for their use in organizational research. Organizational Research Methods, 15(4), 553–601.

    Article  Google Scholar 

  57. Van Kleef, G. A., Homan, A. C., Beersma, B., van Knippenberg, D., van Knippenberg, B., & Damen, F. (2009). Searing sentiment or cold calculation? The effects of leader emotional displays on team performance depend on follower epistemic motivation. Academy of Management Journal, 52(3), 562–580.

    Article  Google Scholar 

  58. Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & Management, 44(2), 206–215.

    Article  Google Scholar 

  59. Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20(3), 470–477.

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brent B. Clark.

Appendix

Appendix

Category Exemplars (IAT-1: Technology Industries)

“Technology”: Robotics, Semiconductors, Biotech, Pharmaceuticals, Aerospace, Nanotech, Genetics

“Non-Technology”: Trucking, Livestock, Restaurants, Groceries, Textiles, Insurance, Apparel

Category Exemplars (IAT-2: Technological Products)

“Technology”: Laser, Fiber Optics, Wifi, Satellite, Software, Nuclear Energy, Solar Cells

“Non-Technology”: Soap, Ruler, Shoe, Chair, Backpack, Hammer, Brick

Evaluative Exemplars (Both IAT-1 and -2)

“Success”: Victory, Solution, Achievement, Triumph, Win, Accomplishment, Advancement

“Failure”: Defeat, Flop, Lose, Breakdown, Fiasco, Malfunction, Disaster

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, B.B., Robert, C. & Hampton, S.A. The Technology Effect: How Perceptions of Technology Drive Excessive Optimism. J Bus Psychol 31, 87–102 (2016). https://doi.org/10.1007/s10869-015-9399-4

Download citation

Keywords

  • Technology
  • Decision making
  • Optimism
  • Diagnostic cue
  • Resource dilemma
  • Implicit association test