Abstract
Meta-analytic reviews are an important tool for advancing science and guiding evidence-based practice. Publication bias is one of the greatest threats to meta-analytic reviews. This paper assesses the degree of publication bias in four previously published meta-analytic datasets from various fields of study in the organizational sciences. Of these datasets, one appears to be relatively unaffected by publication bias while the others seem to be noticeably influenced by this bias. Our “null” result (i.e., a prior meta-analytic estimate is unlikely to have been affected by publication bias) increases our confidence in the accuracy of our cumulative knowledge. Yet, our other findings suggest the presence of publication bias and point to the need for caution and further research.
Similar content being viewed by others
Notes
Among other factors, the failsafe N (Rosenthal 1979) rests on the improbable assumption that “missing” effect sizes are zero in magnitude (it focuses on p values rather than effect size magnitude). Thus, the failsafe N is inadequate to assess publication bias (Becker 2005; see also, e.g., Aguinis et al. 2011; Becker 1994, Evans 1996; Kepes et al. 2012).
In the organizational sciences, sub-group analyses tend to compare samples published in journal articles to “unpublished” samples (e.g., dissertations, conference papers, completely unpublished samples). Thus, sub-group comparisons assess the extent to which the results from distinct sub-groups differ (Banks et al. 2010). Inherent in such a comparison are the assumptions that all published and unpublished samples have been identified or that the samples in each sub-group are representative of all completed samples within those sub-groups. Both assumptions are unlikely to hold (Hopewell et al. 2005).
The accuracy of meta-analytic estimates depends on the number samples in the meta-analytic distribution, which depends on sample and study properties, including levels of statistical significance (i.e., the samples in the meta-analytic distribution are unlikely to be perfectly “true” representations of the population). This type of sampling error is called second-order sampling error (Hunter and Schmidt 2004). The smaller the number of samples in the meta-analytic distribution, the higher the chances that the meta-analytic results are influenced by this error.
This does not affect the decision to use the random-effects estimation model for the meta-analytic procedures as the estimation models for the meta-analytic and trim and fill procedures are independent of each other.
The random-effects trim and fill model did not support this finding as zero samples were imputed, yielding results that are identical to the meta-analytic ones (i.e., t&f adj. \( {\bar r_o} \) = .28; t&f adj. 95 % CI = .24–.33).
The random-effects trim and fill model imputed one missing sample, yielding a trim and fill adjusted \( {\bar r_o} \) of .17 (t&f adj. 95 % CI = .03–.30). Given the size of the distribution (k = 8), we did not interpret the results from Egger’s test of the intercept and Begg and Mazumdar’s rank correlation test.
The random-effects trim and fill imputed four samples at the right-hand side of the funnel plot, yielding a trim and fill adjusted observed mean of .26 (t&f adj. 95 % CI = .20–.32).
However, the random-effects trim and fill did not impute any missing samples, leaving the trim and fill adjusted statistics identical to the meta-analytic ones (i.e., t&f adj. \( {\bar r_o} \) = .17; t&f adj. 95 % CI = .12–.22).
The random-effects trim and fill indicated this as well. It imputed 13 samples at the right-hand side of the funnel plot, yielding a trim and fill adjusted observed mean of −.07 (t&f adj. 95 % CI = −.14 to −.01).
The random-effects trim and fill model did not support this finding. This trim and fill model imputed zero samples, yielding results that are identical to the meta-analytic ones (i.e., t&f adj. \( {\bar r_o} \) = 1.09; t&f 95 % CI = .72–1.46).
Samples in the social sciences, including the organizational sciences, typically contain more between-sample heterogeneity than samples in the medical sciences. For instance, the medical sciences tend to use randomized control trials, which are subject to substantially less heterogeneous influences than the study designs predominantly used in the organizational sciences (e.g., field studies). Similarly, heterogeneous influences due to measurement error tend to be substantially less in the medical sciences because variables are often dichotomous (e.g., drug treatment [yes/no], side-effects [yes/no], and death [yes/no]).
References
Aguinis, H., Pierce, C. A., Bosco, F. A., Dalton, D. R., & Dalton, C. M. (2011). Debunking myths and urban legends about meta-analysis. Organizational Research Methods, 14, 306–331. doi:10.1177/1094428110375720.
American Psychological Association. (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: American Psychological Association.
Banks, G. C., Batchelor, J. H., & McDaniel, M. A. (2010). Smarter people are (a bit) more symmetrical: A meta-analysis of the relationship between intelligence and fluctuating asymmetry. Intelligence, 38, 393–401. doi:10.1016/j.intell.2010.04.003.
Banks, G. C., Kepes, S., & Banks, K. P. (2012a). Publication bias: The antagonist of meta-analytic reviews and effective policy making. Educational Evaluation and Policy Analysis, 34, 259–277. doi:10.3102/0162373712446144.
Banks, G. C., Kepes, S., & McDaniel, M. A. (2012b). Publication bias: A call for improved meta-analytic practice in the organizational sciences. International Journal of Selection and Assessment, 20, 182–196. doi:10.1111/j.1468-2389.2012.00591.x.
Banks, G. C., & McDaniel, M. A. (2011). The kryptonite of evidence-based I-O psychology. Industrial and Organizational Psychology: Perspectives on Science and Practice, 4, 40–44. doi:10.1111/j.1754-9434.2010.01292.x.
Becker, B. J. (1994). Combining significance levels. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 215–230). New York: Russell Sage Foundation.
Becker, B. J. (2005). The failsafe N or file-drawer number. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 111–126). West Sussex: Wiley.
Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088–1101. doi:10.2307/2533446.
Berlin, J. A., & Ghersi, D. (2005). Preventing publication bias: Registries and prospective meta-analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 35–48). West Sussex: Wiley.
Bettencourt, B. A., & Miller, N. (1996). Gender differences in aggression as a function of provocation: A meta-analysis. Psychological Bulletin, 119, 422–447. doi:10.1037/0033-2909.119.3.422.
Blackwell, S. C., Thompson, L., & Refuerzo, J. (2009). Full publication of clinical trials presented at a national maternal-fetal medicine meeting: Is there a publication bias? American Journal of Perinatology, 26, 679–682. doi:10.1055/s-0029-1220786.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2005). Comprehensive meta-analysis (Version 2). Englewood: Biostat.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.
Briner, R. B., & Rousseau, D. M. (2011). Evidence-based I-O psychology: Not there yet. Industrial and Organizational Psychology: Perspectives on Science and Practice, 4, 3–22. doi:10.1111/j.1754-9434.2010.01287.x.
Chan, A.-W., Hróbjartsson, A., Haahr, M. T., Gøtzsche, P. C., & Altman, D. G. (2004). Empirical evidence for selective reporting of outcomes in randomized trials: Comparison of protocols to published articles. Journal of the American Medical Association, 291, 2457–2465. doi:10.1001/jama.291.20.2457.
Cooper, H. (2003). Editorial. Psychological Bulletin, 129, 3–9. doi:10.1037/0033-2909.129.1.3.
Curfman, G. D., Morrissey, S., & Drazen, J. M. (2006). Expression of concern reaffirmed. New England Journal of Medicine, 354, 1193. doi:10.1056/NEJMe068054.
Davis, M. S. (1971). That’s interesting! Towards a phenomenology of sociology and a sociology of phenomenology. Philosophy of the Social Sciences, 1, 309–344. doi:10.1177/004839317100100211.
Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. Journal of the American Medical Association, 263, 1385–1389. doi:10.1001/jama.263.10.1385.
Dickersin, K. (2005). Publication bias: Recognizing the problem, understandings its origins and scope, and preventing harm. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 11–34). West Sussex: Wiley.
Duval, S. J. (2005). The “trim and fill” method. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 127–144). West Sussex: Wiley.
Duval, S. J., & Tweedie, R. L. (2000a). A nonparametric “Trim and Fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95, 89–98. doi:10.2307/2669529.
Duval, S. J., & Tweedie, R. L. (2000b). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463. doi:10.1111/j.0006-341X.2000.00455.x.
Dwan, K., et al. (2008). Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS ONE, 3, e3081. doi:10.1371/journal.pone.00030.
Eagly, A. H., Johannesen-Schmidt, M. C., & van Engen, M. L. (2003). Transformational, transactional, and laissez-faire leadership styles: A meta-analysis comparing women and men. Psychological Bulletin, 129, 569–591. doi:10.1037/0033-2909.129.4.569.
Egger, M., & Smith, G. D. (1998). Bias in location and selection of studies. British Medical Journal, 316, 61–66. doi:10.1136/bmj.316.7124.61.
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629–634. doi:10.1136/bmj.315.7109.629.
Evangelou, E., Trikalinos, T. A., & Ioannidis, J. P. (2005). Unavailability of online supplementary scientific information from articles published in major journals. The FASEB Journal, 19, 1943–1944. doi:10.1096/fj.05-4784lsf.
Evans, S. (1996). Statistician’s comment (to Misleading meta-analysis: “Fail safe N” is a useful mathematical measure of the stability of results by R. Persaud). British Medical Journal, 312, 125.
Ferguson, C. J., & Brannick, M. T. (2011). Publication bias in psychological science: Prevalence, methods for identifying and controlling, and implications for the use of meta-analyses. Psychological Methods, 17, 120–128. doi:10.1037/a0024445.
Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63, 665–694. doi:10.1348/000711010X502733.
Gigerenzer, G. (2004). Mindless statistics. Journal of Socio-Economics, 33, 587–606. doi:10.1016/j.socec.2004.09.033.
Greenhouse, J. B., & Iyengar, S. (2009). Sensitivity analysis and diagnostics. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 417–433). New York: Russell Sage Foundation.
Greenwald, A. G. (1975). Consequences of prejudice against the null hypothesis. Psychological Bulletin, 82, 1–20. doi:10.1037/h0076157.
Hedges, L. V. (1992). Modeling publication selection effects in meta-analysis. Statistical Science, 7, 246–255. doi:10.1214/ss/1177011364.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.
Hedges, L. V., & Vevea, J. L. (2005). Selection methods approaches. In H. R. Rothstein, A. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 145–174). West Sussex: Wiley.
Hermelin, E., Lievens, F., & Robertson, I. T. (2007). The validity of assessment centers for the prediction of supervisory performance ratings: A meta-analysis. International Journal of Selection and Assessment, 15, 405–411. doi:10.1111/j.1468-2389.2007.00399.x.
Higgins, J. P. T., & Green, S. (Eds.). (2009). Cochrane handbook for systematic reviews of interventions; Version 5.0.2 [updated September 2009]: The Cochrane Collaboration. www.cochrane-handbook.org.
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558. doi:10.1002/sim.1186.
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557–560. doi:10.1136/bmj.327.7414.557.
Hopewell, S., Clarke, M., & Mallett, S. (2005). Grey literature and systematic reviews. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 48–72). West Sussex: Wiley.
Hopewell, S., Loudon, K., Clarke, M. J., Oxman, A. D., & Dickersin, K. (2009). Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.MR000006.pub3.
Hopewell, S., McDonald, S., Clarke, M. J., & Egger, M. (2007). Grey literature in meta-analyses of randomized trials of health care interventions. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.MR000006.pub3.
Hubbard, R., & Armstrong, J. S. (1997). Publication bias against null results. Psychological Reports, 80, 337–338. doi:10.2466/PR0.80.1.337-338.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park: Sage.
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2, e124. doi:10.1371/journal.pmed.0020124.
Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in action. Administrative Science Quarterly, 24, 602–611. doi:10.2307/2392366.
Kepes, S., Banks, G. C., McDaniel, M., & Whetzel, D. L. (2012). Publication bias in the organizational sciences. Organizational Research Methods,. doi:10.1177/1094428112452760.
Kisamore, J. L., & Brannick, M. T. (2008). An illustration of the consequences of meta-analysis model choice. Organizational Research Methods, 11, 35–53. doi:10.1177/1094428106287393.
Le, H., Oh, I.-S., Shaffer, J., & Schmidt, F. L. (2007). Implications of methodological advances for the practice of personnel selection: How practitioners benefit from meta-analysis. Academy of Management Perspectives, 21, 6–15.
McDaniel, M. A. (2009, April). Cumulative meta-analysis as a publication bias method. Paper presented at the annual meeting of the Society for Industrial and Organizational Psychology, New Orleans, LA.
McDaniel, M. A., Rothstein, H. R., & Whetzel, D. L. (2006). Publication bias: A case study of four test vendors. Personnel Psychology, 59, 927–953. doi:10.1111/j.1744-6570.2006.00059.x.
McNatt, D. B. (2000). Ancient Pygmalion joins contemporary management: A meta-analysis of the result. Journal of Applied Psychology, 85, 314–322. doi:10.1037/0021-9010.85.2.314.
Moreno, S. G., Sutton, A. J., Turner, E. H., Abrams, K. R., Cooper, N. J., Palmer, T. M., et al. (2009). Novel methods to deal with publication biases: Secondary analysis of antidepressant trials in the FDA trial registry database and related journal publications. British Medical Journal, 339, b2981. doi:10.1136/bmj.b2981.
Palmer, T. M., Peters, J. L., Sutton, A. J., & Moreno, S. G. (2008). Contour-enhanced funnel plots for meta-analysis. Stata Journal, 8, 242–254.
Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2008). Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. Journal of Clinical Epidemiology, 61, 991–996. doi:10.1016/j.jclinepi.2007.11.010.
Peters, J., Sutton, A., Jones, D. R., Abrams, K. R., Rushton, L., & Moreno, S. G. (2010). Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. Journal of the Royal Statistical Society (Series A), 173, 575–591. doi:10.1111/j.1467-985X.2009.00629.x.
Quiñones, M. A., Ford, J. K., & Teachout, M. S. (1995). The relationship between work experience and job performance: A conceptual and meta-analytic review. Personnel Psychology, 48, 887–910. doi:10.1111/j.1744-6570.1995.tb01785.x.
Renkewitz, F., Fuchs, H. M., & Fiedler, S. (2011). Is there evidence of publication biases in JDM research? Judgment and Decision Making, 6, 870–881.
Robbins, S., Oh, I.-S., Le, H., & Button, C. (2009). Intervention effects on college performance and retention as mediated by motivational, emotional, and social control factors: Integrated meta-analytic path-analysis. Journal of Applied Psychology, 94, 1163–1184. doi:10.1037/a0015738.
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86, 638–641. doi:10.1037/0033-2909.86.3.638.
Rothstein, H. R. (2012). Accessing relevant literature. In H. Cooper (Ed.), APA handbook of research methods in psychology: Vol. 1. Foundations, planning, measures, and psychometrics (pp. 133–144). Washington, DC: American Psychological Association.
Rothstein, H. R., & Hopewell, S. (2009). Grey literature. In H. M. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 103–126). New York: Russell Sage Foundation.
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005a). Publication bias in meta-analyses. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 1–7). West Sussex: Wiley.
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005b). Publication bias in meta-analysis: Prevention, assessment, and adjustments. West Sussex: Wiley.
Sackett, P. R., & Larson, J. R. (1990). Research strategies and tactics in industrial and organizational psychology. In M. D. Dunnette & L. M. Hough (Eds.), Handbook of industrial and organizational psychology (Vol. 1, pp. 419–489). Palo Alto, CA: Consulting Psychologists Press.
Scandura, T. A., & Williams, E. A. (2000). Research methodology in management: Current practices, trends, and implications for future research. The Academy of Management Journal, 43, 1248–1264. doi:10.2307/1556348.
Schmidt, F. L., & Le, H. (2005). Hunter & Schmidt’s Meta-analysis programs (Version 1.1). The University of Iowa, IA.
Schmidt, F. L., Oh, I.-S., & Hayes, T. (2009). Fixed versus random effects models in meta-analysis: Model properties and an empirical comparison of differences in results. British Journal of Mathematical and Statistical Psychology, 62, 97–128. doi:10.1348/000711007X255327.
Schopfel, J. (2006). Observations on the future of grey literature. Grey Journal, 2, 67–76.
Schulze, R. (2004). Meta-analysis: A comparison of approaches. Cambridge: Hogrefe & Huber.
Smith, G. D., & Egger, M. (1994). Who benefits from medical interventions? British Medical Journal, 308, 72–74. doi:10.1136/bmj.308.6921.72.
Song, F., Easterwood, A., Gilbody, S., Duley, L., & Sutton, A. J. (2000). Publication and other selection biases in systematic reviews. Health Technology, 4, 1–115. doi:10.3310/hta4100.
Song, F., et al. (2010). Dissemination and publication of research findings: An updated review of related biases. Health Technology Assessment, 14, 1–220. doi:10.3310/hta14080.
Sterling, T. D., & Rosenbaum, W. L. (1995). Publication decisions revisited: The effect of the outcome of statistical tests on the decision to publish and vice versa. American Statistician, 49, 108–112. doi:http://www.tandfonline.com/doi/abs/10.1080/00031305.1995.10476125.
Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication bias and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 99–110). West Sussex: Wiley.
Sterne, J. A., Gavaghan, D., & Egger, M. (2005). The funnel plot. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 75–98). West Sussex: Wiley.
Sterne, J. A., et al. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. British Medical Journal, 342, d4002–d4010. doi:10.1136/bmj.d4002.
Sutton, A. J. (2005). Evidence concerning the consequences of publication and related biases. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments (pp. 175–192). West Sussex: Wiley.
Sutton, A. J. (2009). Publication bias. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 435–452). New York: Russell Sage Foundation.
Terrin, N., Schmid, C. H., Lau, J., & Olkin, I. (2003). Adjusting for publication bias in the presence of heterogeneity. Statistics in Medicine, 22, 2113–2126. doi:10.1002/sim.1461.
Torgerson, C. J. (2006). Publication bias: The Achilles’ heel of systematic reviews? British Journal of Educational Studies, 54, 89–102. doi:http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8527.2006.00332.x/abstract.
Trikalinos, T. A., & Ioannidis, J. P. A. (2005). Assessing the evolution of effect sizes over time. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 241–259). West Sussex: Wiley.
Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A., & Rosenthal, R. (2008). Selective publication of antidepressant trials and its influence on apparent efficacy. New England Journal of Medicine, 358, 252–260. doi:10.1056/NEJMsa065779.
Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychological Methods, 10, 428–443. doi:10.1037/1082-989X.10.4.428.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kepes, S., Banks, G.C. & Oh, IS. Avoiding Bias in Publication Bias Research: The Value of “Null” Findings. J Bus Psychol 29, 183–203 (2014). https://doi.org/10.1007/s10869-012-9279-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10869-012-9279-0