Skip to main content
Log in

Base flipping mechanism and binding strength of methyl-damaged DNA during the interaction with AGT

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data that are used to produce the figures/charts in this paper are available from the corresponding author in case reproduction is needed.

References

  1. Bont, D.R., Larebeke, N.L.: Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169–185 (2004). https://doi.org/10.1093/mutage/geh025

    Article  PubMed  Google Scholar 

  2. Jackson, S.P., Bartek, J.: The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009). https://doi.org/10.1038/nature08467

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Chatterjee, N., Walker, G.C.: Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58, 235–263 (2017). https://doi.org/10.1002/em.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Drabløs, F., Feyzi, E., Aas, P.A., Vaagbø, C.B., Kavli, B., Bratlie, M.S., Peña-Diaz, J., Otterlei, M., Slupphaug, G., Krokan, H.E.: Alkylation damage in DNA and RNA-repair mechanisms and medical significance. DNA Repair 3, 1389–1407 (2004). https://doi.org/10.1016/j.dnarep.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  5. Fu, D., Calvo, J.A., Samson, L.D.: Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12, 104–120 (2012). https://doi.org/10.1038/nrc3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ames, B.N., Shigenaga, M.K., Gold, L.S.: DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ. Healt. Pers. 101, 35–44 (1993). https://doi.org/10.1289/ehp.93101s535

    Article  CAS  Google Scholar 

  7. Rydberg, B., Lindahl, T.: Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1, 211–216 (1982). https://doi.org/10.1002/j.1460-2075.1982.tb01149.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, L., Gerson, S.L.: Targeted modulation of MGMT: clinical implications. Clin. Cancer Res. 12, 328–331 (2006). https://doi.org/10.1158/1078-0432.CCR-05-2543

    Article  CAS  PubMed  Google Scholar 

  9. Paulsen, M., Ferguson-Smith, A.C.: DNA methylation in genomic imprinting, development, and disease. J. Pathology 195, 97–110 (2001). https://doi.org/10.1002/path.890

    Article  CAS  Google Scholar 

  10. Daniels, D.S., Woo, T.T., Luu, K.X., Noll, D.M., Clarke, N.D., Pegg, A.E., Tainer, J.A.: DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat. Struc. Mol. Biol. 11, 714–720 (2004). https://doi.org/10.1038/nsmb791

    Article  CAS  Google Scholar 

  11. Kyrtopoulos, S.A., Anderson, L.M., Chhabra, S.K., Souliotis, V.L., Pletsa, V., Valavanis, C., Georgiadis, P.: DNA adducts and the mechanism of carcinogenesis and cytotoxicity of methylating agents of environmental and clinical significance. Cancer Detect. Preven. 21, 391–405 (1997)

    CAS  Google Scholar 

  12. Maser, R.S., DePinho, R.A.: Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002). https://doi.org/10.1126/science.297.5581.565

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Priyakumar, U.D., MacKerell, A.D.: Computational approaches for investigating base flipping in oligonucleotides. Chem. Rev. 106, 489–505 (2006). https://doi.org/10.1021/cr040475z

    Article  CAS  PubMed  Google Scholar 

  14. Crone, T.M., Goodtzova, K., Pegg, A.E.: Amino acid residues affecting the activity and stability of human O6-alkylguanine-DNA alkyltransferase. Mut. Res./DNA Rep. 363, 15–25 (1996). https://doi.org/10.1016/0921-8777(95)00058-5

    Article  Google Scholar 

  15. Kelley, M.R., Fishel, M.L.: DNA repair proteins as molecular targets for cancer therapeutics. Anti-Cancer Agen. Med. Chem. 8, 417–425 (2008). https://doi.org/10.2174/187152008784220294

    Article  CAS  Google Scholar 

  16. Hu, J., Ma, A., Dinner, A.R.: A two-step nucleotide-flipping mechanism enables kinetic discrimination of DNA lesions by AGT. Proc. Nat. Acad. Sci. U.S.A. 105, 4615–4620 (2008). https://doi.org/10.1073/pnas.070805810

    Article  CAS  ADS  Google Scholar 

  17. Ali, R.B., Teo, A.K.-C., Oh, H.K., Chuang, L.S.-H., Ayi, T.-C., Li, B.F.L.: Implication of localization of human DNA repair enzyme O6-methylguanine-DNA methyltransferase at active transcription sites in transcription-repair coupling of the mutagenic O6-methylguanine lesion. Mol. Cell. Biol. 18, 1660–1669 (1998). https://doi.org/10.1128/MCB.18.3.1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duguid, E.M., Rice, P.A., He, C.: The structure of the human AGT protein bound to DNA and its implications for damage detection. J. Mol. Biol. 350, 657–666 (2005). https://doi.org/10.1016/j.jmb.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  19. Jena, N.R., Shukla, P.K., Jena, H.S., Mishra, P.C., Suhai, S.: O6-methylguanine repair by O6-alkylguanine-DNA alkyltransferase. J. Phys. Chem. B 113, 16285–16290 (2009). https://doi.org/10.1021/jp907836w

    Article  CAS  PubMed  Google Scholar 

  20. Tessmer, I., Fried, M.G.: Insight into the cooperative DNA binding of the O6-alkylguanine DNA alkyltransferase. DNA Repair 20, 14–22 (2014). https://doi.org/10.1016/j.dnarep.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koirala, R.P., Khanal, S.P., Shiwakoti, S., Adhikari, N.P.: Intermolecular interaction of hTHYN1 protein with double methylated DNA at 5m-cytosine nucleotide. J. Inst. Sci. Tech. 25, 37–44 (2020). https://doi.org/10.3126/jist.v25i1.29444

    Article  Google Scholar 

  22. Izrailev, S., Crofts, A.P., Berry, E.A., Schulten, K.: Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex. Biophys. J. 77, 1753–1768 (1999). https://doi.org/10.1016/S0006-3495(99)77022-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tubbs, J.L., Pegg, A.E., Tainer, J.A.: DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair 6, 1100–1115 (2007). https://doi.org/10.1016/j.dnarep.2007.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koirala, R.P., Pokhrel, R., Baral, P., Tiwari, P.B., Chapagain, P.P., Adhikari, N.P.: Structural insights into the repair mechanism of AGT for methyl-induced DNA damage. Biol. Chem. 402, 1203–1211 (2021). https://doi.org/10.1515/hsz-2021-0198

    Article  CAS  PubMed  Google Scholar 

  26. Mattossovich, R., Merlo, R., Miggiano, R., Valenti, A., Perugino, G.: O6-alkylguanine-DNA alkyltransferases in microbes living on the edge: from stability to applicability. Int. J. Mol. Sci. 21, 2878 (2020). https://doi.org/10.3390/ijms21082878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daniels, D.S., Clifford, D.M., Arvai, A.S., Kanugula, S., Pegg, A.E., Tainer, J.A.: Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. 19, 1719–1730 (2000). https://doi.org/10.1093/emboj/19.7.1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sedgwick, B.: Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5, 148–157 (2002). https://doi.org/10.1038/nrm1312

    Article  CAS  Google Scholar 

  29. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., Jeong, J.C., Qi, Y., Jo, S., Pande, V.S., Case, D.A., Brooks, C.L., III., MacKerell, A.D., Jr., Klauda, J.B., Im, W.: CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016). https://doi.org/10.1021/acs.jctc.5b00935

    Article  CAS  PubMed  Google Scholar 

  31. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B.L., Grubmüller, H., MacKerell, A.D.: CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  32. Harvey, M.J., Giupponi, G., Fabritiis, G.D.: ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2009). https://doi.org/10.1021/ct9000685

    Article  CAS  PubMed  Google Scholar 

  33. Bhandarkar, M., Bhatele, A., Bohm, E., Brunner, R., Buelens, F., Chipot, C., Dalke, A., Dixit, S., Fiorin, G., Freddolino, P., Grayson, P., Gullingsrud, J., Gursoy, A., Hardy, D., Harrison, C., Hénin, J., Humphrey, W., Hurwitz, D., Krawetz, N., Kumar, S., Kunzman, D., Lee, C., Mei, C., Nelson, M., Phillips, J., Sarood, O., Shinozaki, A., Zheng, G., Zhu, F.: NAMD user’s guide. University of Illinois and Beckman Institute, Urbana, IL (2003)

    Google Scholar 

  34. Martínez, L., Polikarpov, I., Skaf, M.S.: Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach. J. Phys. Chem. B 112, 10741–10751 (2008). https://doi.org/10.1021/jp803403c

    Article  CAS  PubMed  Google Scholar 

  35. Gullingsrud, J.R., Braun, R., Schulten, K.: Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J. Comput. Phys. 151, 190–211 (1999). https://doi.org/10.1006/jcph.1999.6218

    Article  CAS  ADS  Google Scholar 

  36. Lindahl, T., Demple, B., Robins, P.: Suicide inactivation of the E. coli O6-methylguanine-DNA methyltransferase. EMBO J. 1, 1359–1363 (1982). https://doi.org/10.1002/j.1460-2075.1982.tb01323.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore, M.H., Gulbis, J.M., Dodson, E.J., Demple, B., Moody, P.C.: Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 13, 1495–1501 (1994). https://doi.org/10.1002/j.1460-2075.1994.tb06410.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wade, R.C., Goodford, P.J.: The role of hydrogen-bonds in drug binding. Prog. Clinic. Biol. Research 289, 433–444 (1989)

    CAS  Google Scholar 

  39. Koirala, R.P., Bhusal, H.P., Khanal, S.P., Adhikari, N.P.: Effect of temperature on transport properties of cysteine in water. AIP Advan. 10, 025122 (2020). https://doi.org/10.1063/1.5132777

    Article  CAS  ADS  Google Scholar 

  40. Cherstvy, A.G.: Electrostatic interactions in biological DNA-related systems. Phys. Chem. Chem. Phys. 13, 9942–9968 (2011). https://doi.org/10.1039/C0CP02796K

    Article  CAS  PubMed  Google Scholar 

  41. DiStasio, R.A., Gobre, V.V., Tkatchenko, A.: Many-body van der Waals interactions in molecules and condensed matter. J. Phys. Conden. Mat. 26, 213202 (2014). https://doi.org/10.1088/0953-8984/26/21/213202

    Article  CAS  Google Scholar 

  42. Pantha, N., Belbase, K., Adhikari, N.P.: First-principles study of the interaction of hydrogen molecular on Na-adsorbed graphene. Appl. Nanosci. 5, 393–402 (2015). https://doi.org/10.1007/s13204-014-0329-y

    Article  CAS  ADS  Google Scholar 

  43. Matthew, J.B., Ohlendorf, D.H.: Electrostatic deformation of DNA by a DNA-binding protein. J. Biol. Chem. 260, 5860–5862 (1985)

    Article  CAS  PubMed  Google Scholar 

  44. Yunta, M.J.: It is important to compute intramolecular hydrogen bonding in drug design. Am. J. Model. Optim. 5, 24–57 (2017). https://doi.org/10.12691/ajmo-5-1-3

    Article  Google Scholar 

  45. Zou, X., Ma, W., Solov’Yov, I.A., Chipot, C., Schulten, K.: Recognition of methylated DNA through methyl-CpG binding domain proteins. Nucleic Acids Res. 40, 2747–2758 (2012). https://doi.org/10.1093/nar/gkr1057

    Article  CAS  PubMed  Google Scholar 

  46. Pathak, R.K., Gupta, A., Shukla, R., Baunthiyal, M.: Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of hyperuricemia: a molecular docking and simulation study. Comput. Biol. Chem. 76, 32–41 (2018). https://doi.org/10.1016/j.compbiolchem.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  47. Patel, J.S., Berteotti, A., Ronsisvalle, S., Rocchia, W., Cavalli, A.: Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J. Chem. Inform. Model. 54, 470–480 (2014). https://doi.org/10.1021/ci4003574

    Article  CAS  Google Scholar 

  48. Mai, S.L., Binh, K.M.: Steered molecular dynamics-a promising tool for drug design. Current Bioinform. 7, 342–351 (2012). https://doi.org/10.2174/157489312803901009

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Professor Alexander D. MacKerell Jr from Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, USA for providing force field parameters for methylated residues. The authors acknowledge support from the Research Coordination and Development Council (RCDC) of Tribhuvan University Grants number TU-NPAR-077/78-ERG 14.

Author information

Authors and Affiliations

Authors

Contributions

Rajendra Prasad Koirala conducted the research work under the supervision of Narayan Prasad Adhikari.

Corresponding author

Correspondence to Narayan Prasad Adhikari.

Ethics declarations

Ethical approval

This is a theoretical work. The work is not intended by any financial or any other personal interest; rather it is solely research-motivated.

Informed consent

Both authors agree to submit and publish this article in the Journal of Biological Physics.

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

• Triple hydrogen bonds of guanine with cytosine is reduced to a double hydrogen bonds due to methylation at O6 atom, which facilitates to flip out the methylated guanine.

• Hydrogen bonding, electrostatic and van der Waals interaction basically contribute to bind at the interfacial region of DNA and AGT.

• Unbinding force is greater in mDNA-AGT complex than the DNA-mAGT that exhibits the degradation the binding strength after methylation repair in DNA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koirala, R.P., Adhikari, N.P. Base flipping mechanism and binding strength of methyl-damaged DNA during the interaction with AGT. J Biol Phys 50, 71–87 (2024). https://doi.org/10.1007/s10867-023-09649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09649-9

Keywords

Navigation