Skip to main content
Log in

Thermal transport across membranes and the Kapitza length from photothermal microscopy

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

An analytical model is presented for light scattering associated with heat transport near a cell membrane that divides a complex system into two topologically distinct half-spaces. Our analysis is motivated by experiments on vibrational photothermal microscopy which have not only demonstrated remarkably high contrast and resolution, but also are capable of providing label-free local information of heat transport in complex morphologies. In the first Born approximation, the derived Green’s function leads to the reconstruction of a full 3D image with photothermal contrast obtained using both amplitude and phase detection of periodic excitations. We show that important fundamental parameters including the Kapitza length and Kapitza resistance can be derived from experiments. Our goal is to spur additional experimental studies with high-frequency modulation and heterodyne detection in order to make contact with recent theoretical molecular dynamics calculations of thermal transport properties in membrane systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Bertolotti, M., Li Voti, R.: A note on the history of photoacoustic, thermal lensing, and photothermal deflection techniques. J. App. Phys. 128(23), 230901 (2020)

  2. Berciaud, S., Lasne, D., Blab, G.A., Cognet, L., Lounis, B.: Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment. Phys. Rev. B 73(4), 045424 (2006)

    Article  ADS  Google Scholar 

  3. Berciaud, S., Cognet, L., Blab, G.A., Lounis, B.: Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93(25), 257402 (2004)

    Article  ADS  Google Scholar 

  4. Adhikari, S., Spaeth, P., Kar, A., Baaske, M.D., Khatua, S., Orrit, M.: Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano 14(12), 16414–16445 (2020)

    Article  Google Scholar 

  5. Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., Orrit, M.: Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330(6002), 353–356 (2010)

    Article  ADS  Google Scholar 

  6. Mertiri, A., Altug, H., Hong, M.K., Mehta, P., Mertz, J., Ziegler, L.D., Erramilli, S.: Nonlinear midinfrared photothermal spectroscopy using Zharov splitting and quantum cascade lasers. ACS Photonics 1(8), 696–702 (2014)

    Article  Google Scholar 

  7. Totachawattana, A., Hong, M.K., Erramilli, S., Sander, M.Y.: Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy. Analyst 142(11), 1882–1890 (2017)

    Article  ADS  Google Scholar 

  8. Pavlovetc, I.M., Podshivaylov, E.A., Chatterjee, R., Hartland, G.V., Frantsuzov, P.A., Kuno, M.: Infrared photothermal heterodyne imaging: contrast mechanism and detection limits. J. Appl. Phys. 127(16), 165101 (2020)

    Article  ADS  Google Scholar 

  9. Zhang, D., Li, C., Zhang, C., Slipchenko, M.N., Eakins, G., Cheng, J.-X.: Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2(9), e1600521 (2016)

  10. Li, Z., Aleshire, K., Kuno, M., Hartland, G.V.: Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B 121(37), 8838–8846 (2017)

    Article  Google Scholar 

  11. Aleshire, K., Pavlovetc, I.M., Collette, R., Kong, X.-T., Rack, P.D., Zhang, S., Masiello, D.J., Camden, J.P., Hartland, G.V., Kuno, M.: Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires. Proc. Natl. Acad. Sci. U.S.A. 117(5), 2288–2293 (2020)

    Article  ADS  Google Scholar 

  12. Zhang, Y., Yurdakul, C., Devaux, A.J., Wang, L., Xu, X.G., Connor, J.H., Ünlü, M.S., Cheng, J.-X.: Vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy. Anal. Chem. 93(8), 4100–4107 (2021)

    Article  Google Scholar 

  13. Zong, H., Yurdakul, C., Bai, Y., Zhang, M., Ünlü, M.S., Cheng, J.-X.: Background-suppressed high-throughput mid-infrared photothermal microscopy via pupil engineering. ACS Photonics 8(11), 3323–3336 (2021)

    Article  Google Scholar 

  14. Bai, Y., Zhang, D., Lan, L., Huang, Y., Maize, K., Shakouri, A., Cheng, J.X.: Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv. 5(7), eaav7127 (2019)

  15. Paiva, E.M., Schmidt, F.M.: Ultrafast widefield mid-infrared photothermal heterodyne imaging. Anal. Chem. 94(41), 14242–14250 (2022)

    Article  Google Scholar 

  16. Tamamitsu, M., Toda, K., Shimada, H., Honda, T., Takarada, M., Okabe, K., Nagashima, Y., Horisaki, R., Ideguchi, T.: Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect. Optica. 7(4), 359–366 (2020)

    Article  ADS  Google Scholar 

  17. Robert, H.M.L., Holanová, K., Bujak, Ł, Vala, M., Henrichs, V., Lánský, Z., Piliarik, M.: Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. Nat. Commun. 12(1), 2921 (2021)

    Article  ADS  Google Scholar 

  18. Zhang, Y., Zong, H., Zong, C., Tan, Y., Zhang, M., Zhan, Y., Cheng, J.-X.: Fluorescence-detected mid-infrared photothermal microscopy. J. Am. Chem. Soc. 143(30), 11490–11499 (2021)

    Article  Google Scholar 

  19. Yin, J., Lan, L., Zhang, Y., Ni, H., Tan, Y., Zhang, M., Bai, Y., Cheng, J.-X.: Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat. Commun. 12(1), 7097 (2021)

    Article  ADS  Google Scholar 

  20. Zharov, V.P.: Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat. Photon. 5(2), 110–116 (2011)

    Article  ADS  Google Scholar 

  21. Samolis, P.D., Sander, M.Y.: Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution. Opt. Express 27(3), 2643–2655 (2019)

    Article  ADS  Google Scholar 

  22. Samolis, P.D., Langley, D., O’Reilly, B.M., Oo, Z., Hilzenrat, G., Erramilli, S., Sgro, A.E., McArthur, S., Sander, M.Y.: Label-free imaging of fibroblast membrane interfaces and protein signatures with vibrational infrared photothermal and phase signals. Biomed. Opt. Exp. 12(1), 303–319 (2021)

  23. Chen, K., Song, B., Ravichandran, N.K., Zheng, Q., Chen, X., Lee, H., Sun, H., Li, S., Udalamatta Gamage, G.A.G., Tian, F., Ding, Z.: Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science. 367(6477), 555–559 (2020)

  24. Legrand, R., Abi Ghanem, M., Plawinski, L., Durrieu, M.C., Audoin, B., Dehoux, T.: Thermal microscopy of single biological cells. Appl. Phys. Lett. 107(26), 263703 (2015)

  25. Baffou, G., Rigneault, H., Marguet, D., Jullien, L.: A critique of methods for temperature imaging in single cells. Nat. Methods 11(9), 899–901 (2014)

    Article  Google Scholar 

  26. Sotoma, S., Zhong, C., Kah, J.C.Y., Yamashita, H., Plakhotnik, T., Harada, Y., Suzuki, M.: In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. Sci. Adv. 7(3), eabd7888 (2021)

  27. Okabe, K., Uchiyama, S.: Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Commun. Biol. 4(1), 1–7 (2021)

    Article  Google Scholar 

  28. Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., Uchiyama, S.: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3(1), 705 (2012)

    Article  ADS  Google Scholar 

  29. Garner, A.L., Deminsky, M., Bogdan Neculaes, V., Chashihin, V., Knizhnik, A., Potapkin, B.: Cell membrane thermal gradients induced by electromagnetic fields. J. App. Phys. 113(21), 214701 (2013)

  30. Nakano, T., Kikugawa, G., Ohara, T.: A molecular dynamics study on heat conduction characteristics in DPPC lipid bilayer. J. Chem. Phys. 133(15), 154705 (2010)

  31. Gómez, J., Hilser, V.J., Xie, D., Freire, E.: The heat capacity of proteins. Proteins Struct. Funct. Bioinf. 22(4), 404–412 (1995)

    Article  Google Scholar 

  32. Tian, W., Lin, M., Tang, K., Liang, J., Naveed, H.: High-resolution structure prediction of β-barrel membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 115(7), 1511–1516 (2018)

    Article  ADS  Google Scholar 

  33. Lervik, A., Bresme, F., Kjelstrup, S., Bedeaux, D., Rubi, J.M.: Heat transfer in protein–water interfaces. Phys. Chem. Chem. Phys. 12(7), 1610–1617 (2010)

    Article  Google Scholar 

  34. Youssefian, S., Rahbar, N., Lambert, C.R., Van Dessel, S.: Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature. J. R. Soc. Interface 14(130), 20170127 (2017)

    Article  Google Scholar 

  35. Bastos, A.R.N., Brites, C.D.S., Rojas-Gutierrez, P.A., DeWolf, C., Ferreira, R.A.S., Capobianco, J.A., Carlos, L.D.: Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Func. Mater. 29(48), 1905474 (2019)

    Article  Google Scholar 

  36. Andersen, O.S., Koeppe, R.E.: Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36(1), 107–130 (2007)

    Article  Google Scholar 

  37. Zharov, V.P., Lapotko, D.O.: Photothermal imaging of nanoparticles and cells. IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005)

    Article  ADS  Google Scholar 

  38. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Article  Google Scholar 

  39. Shomali, Z., Kovács, R., Ván, P., Kudinov, I.V., Ghazanfarian, J.: Lagging heat models in thermodynamics and bioheat transfer: a critical review. Continuum Mech. Thermodyn. 34(3), 637–679 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  40. Horny, N., Chirtoc, M., Fleming, A., Hamaoui, G., Ban, H.: Kapitza thermal resistance studied by high-frequency photothermal radiometry. Appl. Phys. Lett. 109(3), 033103 (2016)

    Article  ADS  Google Scholar 

  41. Zhang, Y.: Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52(21), 4829–4834 (2009)

    Article  MATH  Google Scholar 

  42. Nakano, T., Kikugawa, G., Ohara, T.: Molecular heat transfer in lipid bilayers with symmetric and asymmetric tail chains. J. Heat Transf. 135(061301), (2013)

  43. Marti, D., Aasbjerg, R.N.N., Andersen, P.E.E., Hansen, A.K.K.: MCmatlab: an open-source, user-friendly, MATLAB-integrated three-dimensional Monte Carlo light transport solver with heat diffusion and tissue damage. J. Biomed. Opt. 23(12), 121622 (2018)

    Article  ADS  Google Scholar 

  44. Almeida, P.F., Carter, F.E., Kilgour, K.M., Raymonda, M.H., Tejada, E.: Heat capacity of DPPC/cholesterol mixtures: comparison of single bilayers with multibilayers and simulations. Langmuir 34(33), 9798–9809 (2018)

    Article  Google Scholar 

  45. Blume, A.: Apparent molar heat capacities of phospholipids in aqueous dispersion. Effects of chain length and head group structure. (1983)

  46. Ge, Z., Cahill, D.G., Braun, P.V.: Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96(18), 186101 (2006)

    Article  ADS  Google Scholar 

  47. Nakano, M., Arai, Y., Kotera, I., Okabe, K., Kamei, Y., Nagai, T.: Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS ONE 12(2), e0172344 (2017)

    Article  Google Scholar 

  48. Suzuki, M., Plakhotnik, T.: The challenge of intracellular temperature. Biophys. Rev. 12(2), 593–600 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof LD Ziegler, Prof Ji-Xin Cheng, and their groups for discussions and acknowledge the support from the National Institutes of Health (123456 and R01GM142012) and the National Science Foundation (NSF ECCS-1846659).

Funding

Support is acknowledged from the National Institutes of Health (123456 and R01GM142012) and the National Science Foundation (NSF ECCS-1846659).

Author information

Authors and Affiliations

Authors

Contributions

PDS carried out the simulations, supervised by MYS and assisted by SE. ON worked out the theory. SE and MKH drafted the manuscript, and all authors contributed to the final writing.

Corresponding authors

Correspondence to Shyamsunder Erramilli or Onuttom Narayan.

Ethics declarations

Informed consent

N/A (no animal or human studies).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1013 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samolis, P.D., Sander, M.Y., Hong, M.K. et al. Thermal transport across membranes and the Kapitza length from photothermal microscopy. J Biol Phys 49, 365–381 (2023). https://doi.org/10.1007/s10867-023-09636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09636-0

Keywords

Navigation