Skip to main content

Advertisement

Log in

Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach

Interaction of morin with α2M

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern–Volmer’s fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M−1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data generated in the study would be available on reasonable request from the corresponding author.

Abbreviations

α2M:

Alpha-2-macroglobulin

PDB:

Protein data bank

FRET:

Föster resonance energy transfer

CD:

Circular dichroism

FTIR:

Förster transform infrared

References

  1. Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani, L., Poulson, B.G., Jaremko, M.: Important flavonoids and their role as a therapeutic agent. Molecules 25(22), 5243 (2020)

    Article  Google Scholar 

  2. López-Yerena, A., Perez, M., Vallverdú-Queralt, A., Escribano-Ferrer, E.: Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics 12(11), 1123 (2020)

    Article  Google Scholar 

  3. Caselli, A., Cirri, P., Santi, A., Paoli, P.: Morin: a promising natural drug. Curr. Med. Chem. 23(8), 774–791 (2016)

    Article  Google Scholar 

  4. Choudhury, A., Chakraborty, I., Banerjee, T.S., Vana, D.R., Adapa, D.: Efficacy of morin as a potential therapeutic phytocomponent: insights into the mechanism of action. Int. J. Med. Res. Health Sci. 6(11), 175–194 (2017)

    Google Scholar 

  5. Choi, Y.A., Yoon, Y.H., Choi, K., Kwon, M., Goo, S.H., Cha, J.S., Song, I.S.: Enhanced oral bioavailability of morin administered in mixed micelle formulation with PluronicF127 and Tween80 in rats. Biol. Pharm. Bull. 38(2), 208–217 (2015)

    Article  Google Scholar 

  6. Jomová, K., Hudecova, L., Lauro, P., Simunkova, M., Alwasel, S.H., Alhazza, I.M., Valko, M.: A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′, 4′-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper (II) ions: a spectroscopic, absorption titration and DNA damage study. Molecule 24(23), 4335 (2019)

    Article  Google Scholar 

  7. Panhwar, Q.K., Memon, S.: Synthesis of Cr (III)-morin complex: characterization and antioxidant study. Scientific World J. (2014)

  8. Kataria, R., Sobarzo-Sanchez, E., Khatkar, A.: Role of morin in neurodegenerative diseases: a review. Curr. Top. Med. Chem. 18(11), 901–907 (2018)

    Article  Google Scholar 

  9. Kim, J.M., Lee, E.K., Park, G., Kim, M.K., Yokozawa, T., Yu, B.P., Chung, H.Y.: Morin modulates the oxidative stress-induced NF-κB pathway through its anti-oxidant activity. Free Rad. Res. 44(4), 454–461 (2010)

    Article  Google Scholar 

  10. Jung, J.S., Choi, M.J., Lee, Y.Y., Moon, B.I., Park, J.S., Kim, H.S.: Suppression of lipopolysaccharide-induced neuroinflammation by morin via MAPK, PI3K/Akt, and PKA/HO-1 signaling pathway modulation. J. Agric. Food Chem. 65(2), 373–382 (2017)

    Article  Google Scholar 

  11. Li, X., Yao, Q., Huang, J., Jin, Q., Xu, B., Chen, F., Tu, C.: Morin hydrate inhibits TREM-1/TLR4-mediated inflammatory response in macrophages and protects against carbon tetrachloride-induced acute liver injury in mice. Front. Pharmacol. 10, 1089 (2019)

    Article  Google Scholar 

  12. Madan Kumar, P., Naveen Kumar, P., Manikandan, S., Devaraj, H., Niranjali Devaraj, S.: Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling. Toxicol. Appl. Pharmacol. 277(2), 210–220 (2014)

    Article  Google Scholar 

  13. Cater, J.H., Wilson, M.R., Wyatt, A.R.: Alpha-2-macroglobulin, a hypochlorite-regulated chaperone and immune system modulator. Oxid. Med. Cell Long. 2019, 5410657 (2019)

    Google Scholar 

  14. Serifova, X., Ugarte-Berzal, E., Opdenakker, G., Vandooren, J.: Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sc. 77(15), 3013–3026 (2020)

    Article  Google Scholar 

  15. Rehman, A.A., Ahsan, H., Khan, F.H.: Alpha-2-macroglobulin: a physiological guardian. J. Cell. Physiol. 228(8), 1665–1675 (2013)

    Article  Google Scholar 

  16. Khan, F.H., Mirza, M., Saleemuddin, M.: A crosslinked tetrameric alpha 2M that binds but incompletely entraps trypsin. Biochem. Mol. Biol. Int. 34(2), 337–344 (1994)

    Google Scholar 

  17. Rehman, A.A., Sarwar, T., Arif, H., Ali, S.S., Ahsan, H., Tabish, M., Khan, F.H.: Spectroscopic and thermodynamic studies on ferulic acid-alpha-2-macroglobulin interaction. J. Mol. Struct. 1144, 254–259 (2017)

    Article  ADS  Google Scholar 

  18. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)

    Article  ADS  Google Scholar 

  19. Ganrot, P.O.: Determination of alpha-2-macroglobulin as trypsin-protein esterase. Clin. Chim. Acta. 14(4), 493–501 (1966)

    Article  Google Scholar 

  20. Siddiqui, T., Zia, M.K., Ahsan, H., Khan, F.H.: Quercetin-induced inactivation and conformational alterations of alpha-2-macroglobulin: multi-spectroscopic and calorimetric study. J. Biomol. Struct. Dyn. 38(14), 4107–4118 (2020)

    Article  Google Scholar 

  21. Ali, S.S., Zia, M.K., Siddiqui, T., Ahsan, H., Khan, F.H.: Biophysical analysis of interaction between curcumin and alpha-2-macroglobulin. Int. J. Biol. Macromol. 128, 385–390 (2019)

    Article  Google Scholar 

  22. Zia, M.K., Siddiqui, T., Ali, S.S., Ahsan, H., Khan, F.H.: Deciphering the binding of dutasteride with human alpha-2-macroglobulin: molecular docking and calorimetric approach. Int. J. Biol. Macromol. 133, 1081–1089 (2019)

    Article  Google Scholar 

  23. Wei, J., Jin, F., Wu, Q., Jiang, Y., Gao, D., Liu, H.: Molecular interaction study of flavonoid derivative 3d with human serum albumin using multispectroscopic and molecular modeling approach. Talanta 126, 116–121 (2014)

    Article  Google Scholar 

  24. Raeessi-Babaheydari, E., Farhadian, S., Shareghi, B.: Evaluation of interaction between citrus flavonoid, naringenin, and pepsin using spectroscopic analysis and docking simulation. J. Mol. Liquids 339, 116763 (2021)

  25. Prasad, S., Mandal, I., Singh, S., Paul, A., Mandal, B., Venkatramani, R., Swaminathan, R.: Near UV-visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 8(8), 5416–5433 (2017)

    Article  Google Scholar 

  26. Zhang, Y.F., Zhou, K.L., Lou, Y.Y., Pan, D.Q., Shi, J.H.: Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. J. Biomol. Struct. Dyn. 35(16), 3605–3614 (2017)

    Article  Google Scholar 

  27. Wani, T.A., Bakheit, A.H., Zargar, S., Khayyat, A.I.A., Al-Majed, A.A.: Influence of rutin, sinapic acid, and naringenin on binding of tyrosine kinase inhibitor erlotinib to bovine serum albumin using analytical techniques along with computational approach. Appl. Sci. 12(7), 3575 (2022)

    Article  Google Scholar 

  28. Tian, Z., Tian, L., Shi, M., Zhao, S., Guo, S., Luo, W., Tian, Z.: Investigation of the interaction of a polyamine-modified flavonoid with bovine serum albumin (BSA) by spectroscopic methods and molecular simulation. J. Photochem. Photobiol. B: Biol. 209, 111917 (2020)

  29. Zhao, X., Liu, R., Chi, Z., Teng, Y., Qin, P.: New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J. Phys. Chem. B 114(16), 5625–5631 (2010)

    Article  Google Scholar 

  30. Makarska-Bialokoz, M.: Interactions of hemin with bovine serum albumin and human hemoglobin: a fluorescence quenching study. Spectrochim. Acta A 193, 23–32 (2018)

    Article  ADS  Google Scholar 

  31. Punith, R., Seetharamappa, J.: Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole. Spectrochim. Acta A 92, 37–41 (2012)

    Article  ADS  Google Scholar 

  32. Al-Shabib, N.A., Khan, J.M., Malik, A., Rehman, M.T., AlAjmi, M.F., Husain, F.M., Altwaijry, N.: Molecular interaction of tea catechin with bovine β-lactoglobulin: a spectroscopic and in silico studies. Saudi Pharma. J. 28(3), 238–245 (2020)

    Article  Google Scholar 

  33. Lakowicz, J.R., Weber, G.: Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12(21), 4161–4170 (1973)

  34. Hu, Y.J., Liu, Y., Zhao, R.M., Dong, J.X., Qu, S.S.: Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A: Chem. 179(3), 324–329 (2006)

    Article  Google Scholar 

  35. Sood, D., Kumar, N., Rathee, G., Singh, A., Tomar, V., Chandra, R.: Mechanistic interaction study of bromo-noscapine with bovine serum albumin employing spectroscopic and chemoinformatics approaches. Sci. Rep. 8(1), 1–11 (2018)

    Article  Google Scholar 

  36. Chaves, O.A., da Silva, V.A., Sant’Anna, C.M.R., Ferreira, A.B., Ribeiro, T.A.N., de Carvalho, M.G., Netto-Ferreira, J.C.: Binding studies of lophirone B with bovine serum albumin (BSA): combination of spectroscopic and molecular docking techniques. J. Mol. Struct. 1128, 606–611 (2017)

    Article  ADS  Google Scholar 

  37. Qiao, Y., Luo, Y., Long, N., Xing, Y., Tu, J.: Single-molecular Förster resonance energy transfer measurement on structures and interactions of biomolecules. Micromachine. 12(5), 492 (2021)

    Article  Google Scholar 

  38. Kaur, A., Kaur, P., Ahuja, S.: Förster resonance energy transfer (FRET) and applications thereof. Anal. Meth. 12(46), 5532–5550 (2020)

    Article  Google Scholar 

  39. Rahman, A.J., Kaur, L., Pathak, M., Singh, A., Verma, P., Singhal, R., Ojha, H.: Spectroscopic studies of binding interactions of 2-chloroethylphenyl sulphide with bovine serum albumin. J. Mol. Liquids 340, 117144 (2021)

  40. Singh, N., Chandra, R.: Probing the binding interaction of ortho-vanillin derived chalcone with lysozyme: a biophysical studies aided by in silico calculations. J. Mol. Liquids 321, 114490 (2021)

  41. Sarmah, S., Pahari, S., Belwal, V.K., Jana, M., Roy, A.S.: Elucidation of molecular interaction of bioactive flavonoid luteolin with human serum albumin and its glycated analogue using multi-spectroscopic and computational studies. J. Mol. Liquids 318, 114147 (2020)

  42. Dixit, S., Zia, M.K., Siddiqui, T., Ahsan, H., Khan, F.H.: Interaction of organophosphate pesticide chlorpyrifos with alpha-2-macroglobulin: biophysical and molecular docking approach. J. Immunoassay Immunochem. 42(2), 138–153 (2021)

    Article  Google Scholar 

  43. Zia, M.K., Siddiqui, T., Ali, S.S., Ahsan, H., Khan, F.H.: Exploring the interaction of anti-androgen drug-bicalutamide with human alpha-2-macroglobulin: a biophysical investigation. Int. J. Biol. Macromol. 120, 2285–2292 (2018)

  44. Fu, L., Sun, Y., Ding, L., Wang, Y., Gao, Z., Wu, Z., Bi, Y.: Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Food Chem. 203, 150–157 (2016)

    Article  Google Scholar 

  45. Wu, D., Tang, L., Duan, R., Hu, X., Geng, F., Zhang, Y., Li, H.: Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chem. 347, 129052 (2021)

    Article  Google Scholar 

  46. Tang, H., Huang, L., Zhao, D., Sun, C., Song, P.: Interaction mechanism of flavonoids on bovine serum albumin: insights from molecular property-binding affinity relationship. Spectrochim. Acta A 239, 118519 (2020)

  47. Manouchehri, F., Izadmanesh, Y., Aghaee, E., Ghasemi, J.B.: Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV–Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods. Bioorg. Chem. 68, 124–136 (2016)

    Article  Google Scholar 

  48. Shen, G.F., Liu, T.T., Wang, Q., Jiang, M., Shi, J.H.: Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with bovine serum albumin (BSA). J. Photochem. Photobiol. B: Biol. 153, 380–390 (2015)

    Article  Google Scholar 

  49. Naqvi, A.A., Mohammad, T., Hasan, G.M., Hassan, M.: Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18(20), 1755–1768 (2018)

    Article  Google Scholar 

  50. Lagrange, J., Lecompte, T., Knopp, T., Lacolley, P., Regnault, V.: Alpha-2-macroglobulin in hemostasis and thrombosis: an underestimated old double-edged sword. J. Thromb. Haemostasis 20(4), 806–815 (2022)

    Article  Google Scholar 

  51. Vandooren, J., Itoh, Y.: Alpha-2-macroglobulin in inflammation, immunity and infections. Front. Immunol. 12, 803244 (2021)

  52. Dias, M.C., Pinto, D.C., Silva, A.M.: Plant flavonoids: chemical characteristics and biological activity. Molecule 26(17), 5377 (2021)

    Article  Google Scholar 

  53. Precupas, A., Sandu, R., Neculae, A.V.F., Neacsu, A., Popa, V.T.: Calorimetric, spectroscopic and computational investigation of morin binding effect on bovine serum albumin stability. J. Mol. Liquids 333, 115953 (2021)

  54. Rajput, S.A., Wang, X.Q., Yan, H.C.: Morin hydrate: a comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed. Pharmacother. 138, 111511 (2021)

  55. Krishnan, S.P., Hiray, K.S., Vyas, S.: A Correlative multi-spectroscopy and docking study for the modeling of drug (Luteolin and Quercetin) binding to bovine serum albumin–a tool for the determination of binding characteristics to receptor proteins. Ind. J. Pharm. Edu. Res. 52(3), 492–504 (2018)

    Article  Google Scholar 

  56. Nair, M.S.: Spectroscopic studies on the interaction of serum albumins with plant derived natural molecules. Appl. Spectr. Rev. 53(8), 636–666 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology and the University Grants Commission (UGC), Government of India for the departmental financial support. MKZ acknowledges ICMR for providing Research Associate Fellowship.

Funding

Facilities provided by the Department of Biochemistry, Aligarh Muslim University, Aligarh are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SA: methodology and validation; investigation and data collection; data analysis and interpretation; writing—original draft preparation. MKZ: data analysis and interpretation; supervision; funding acquisition. SF: formal analysis; data analysis and interpretation. HA: resources; writing—original draft preparation; writing—review and editing; formal analysis. FHK: conceptualization and design; supervision; project administration; funding acquisition.

Corresponding author

Correspondence to Fahim H. Khan.

Ethics declarations

Ethical approval

NA.

Informed consent

NA.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S., Zia, M.K., Fatima, S. et al. Probing the binding of morin with alpha-2-macroglobulin using multi-spectroscopic and molecular docking approach. J Biol Phys 49, 235–255 (2023). https://doi.org/10.1007/s10867-023-09629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09629-z

Keywords

Navigation