Skip to main content

How to discern external acoustic waves in a piezoelectric neuron under noise?

Abstract

Biological neurons keep sensitive to external stimuli and appropriate firing modes can be triggered to give effective response to external chemical and physical signals. A piezoelectric neural circuit can perceive external voice and nonlinear vibration by generating equivalent piezoelectric voltage, which can generate an equivalent trans-membrane current for inducing a variety of firing modes in the neural activities. Biological neurons can receive external stimuli from more ion channels and synapse synchronously, but the further encoding and priority in mode selection are competitive. In particular, noisy disturbance and electromagnetic radiation make it more difficult in signals identification and mode selection in the firing patterns of neurons driven by multi-channel signals. In this paper, two different periodic signals accompanied by noise are used to excite the piezoelectric neural circuit, and the signal processing in the piezoelectric neuron driven by acoustic waves under noise is reproduced and explained. The physical energy of the piezoelectric neural circuit and Hamilton energy in the neuron driven by mixed signals are calculated to explain the biophysical mechanism of auditory neuron when external stimuli are applied. It is found that the neuron prefers to respond to the external stimulus with higher physical energy and the signal which can increase the Hamilton energy of the neuron. For example, stronger inputs used to inject higher energy and it is detected and responded more sensitively. The involvement of noise is helpful to detect the external signal under stochastic resonance, and the additive noise changes the excitability of neuron as the external stimulus. The results indicate that energy controls the firing patterns and mode selection in neurons, and it provides clues to control the neural activities by injecting appropriate energy into the neurons and network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. O’Sullivan, J., Herrero, J., Smith, E., et al.: Hierarchical encoding of attended auditory objects in multi-talker speech perception. Neuron 104(6), 1195–1209 (2019)

    Article  Google Scholar 

  2. Shamma, S.A., Micheyl, C.: Behind the scenes of auditory perception. Curr. Opin. Neurobiol. 20(3), 361–366 (2010)

    Article  Google Scholar 

  3. Phillips, D.P., Hall, S.E., Boehnke, S.E.: Central auditory onset responses, and temporal asymmetries in auditory perception. Hear. Res. 167(1–2), 192–205 (2002)

    Article  Google Scholar 

  4. Carcea, I., Insanally, M.N., Froemke, R.C.: Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nat. Commun. 8, 14412 (2017)

    ADS  Article  Google Scholar 

  5. Hsu, A., Woolley, S.M.N., Fremouw, T.E., et al.: Modulation power and phase spectrum of natural sounds enhance neural encoding performed by single auditory neurons. J. Neurosci. 24, 9201–9211 (2004)

    Article  Google Scholar 

  6. Das, N., Biesmans, W., Bertrand, A., et al.: The effect of head-related filtering and ear-specific decoding bias on auditory attention detection. J. Neural Eng. 13(5), 056014 (2016)

    ADS  Article  Google Scholar 

  7. Kaya, E.M., Elhilali, M.: Modelling auditory attention. Philos. Transact. Royal Soc. B: Biol. Sci. 372(1714), 20160101 (2017)

    Article  Google Scholar 

  8. Geravanchizadeh, M., Roushan, H.: Dynamic selective auditory attention detection using RNN and reinforcement learning. Sci. Rep. 11(1), 15497 (2021)

    Article  Google Scholar 

  9. Lu, Y., Wang, M., Yao, L., et al.: Auditory attention decoding from electroencephalography based on long short-term memory networks. Biomed. Signal Process. Control 70, 102966 (2021)

    Article  Google Scholar 

  10. Xin, Y., Zhong, L., Zhang, Y., et al.: Sensory-to-category transformation via dynamic reorganization of ensemble structures in mouse auditory cortex. Neuron 103(5), 909–921 (2019)

    Article  Google Scholar 

  11. He, Y., Nie, S., Liu, R., et al.: Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 31(21), 1900903 (2019)

    Article  Google Scholar 

  12. Li, Z., Li, J., Hong, B., et al.: Speaker–listener neural coupling reveals an adaptive mechanism for speech comprehension in a noisy environment. Cereb. Cortex 31(10), 4719–4729 (2021)

    MathSciNet  Article  Google Scholar 

  13. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fract. 145, 110751 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  14. Guo, Y., Zhou, P., Yao, Z., et al.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Article  Google Scholar 

  15. Zhang, X., Ma, J.: Wave filtering and firing modes in a light-sensitive neural circuit. J. Zhejiang Univ.-Sci. A 22(9), 707–720 (2021)

    Article  Google Scholar 

  16. Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70, 309–327 (1993)

    ADS  MATH  Article  Google Scholar 

  17. Moss, F., Ward, L.M., Sannita, W.G.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115(2), 267–281 (2004)

    Article  Google Scholar 

  18. Jung, P., Mayer-Kress, G.: Spatiotemporal stochastic resonance in excitable media. Phys. Rev. Lett. 74(11), 2130 (1995)

    ADS  Article  Google Scholar 

  19. Harmer, G.P., Davis, B.R., Abbott, D.: A review of stochastic resonance: circuits and measurement. IEEE Trans. Instrum. Meas. 51, 299–309 (2002)

    Article  Google Scholar 

  20. Chialvo, D.R., Calvo, O., Gonzalez, D.L., et al.: Subharmonic stochastic synchronization and resonance in neuronal systems. Phys. Rev. E 65, 050902 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  21. Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)

    ADS  Article  Google Scholar 

  22. Huang, P., Guo, Y., Ren, G., et al.: Energy-induced resonance synchronization in neural circuits. Mod. Phys. Lett. B 35, 2150433 (2021)

    ADS  MathSciNet  Article  Google Scholar 

  23. Nakamura, O., Tateno, K.: Random pulse induced synchronization and resonance in uncoupled non-identical neuron models. Cogn. Neurodyn. 13(3), 303–312 (2019)

    Article  Google Scholar 

  24. Locatelli, N., Mizrahi, A., Accioly, A., et al.: Noise-enhanced synchronization of stochastic magnetic oscillators. Phys. Rev. Appl. 2, 034009 (2014)

    ADS  Article  Google Scholar 

  25. Stein, R.B., Gossen, E.R., Jones, K.E.: Neuronal variability: noise or part of the signal? Nat. Rev. Neurosci. 6, 389–397 (2005)

    Article  Google Scholar 

  26. Ma, W.J., Beck, J.M., Latham, P.E., et al.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9(11), 1432–1438 (2006)

    Article  Google Scholar 

  27. McDonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12(7), 415–425 (2011)

    Article  Google Scholar 

  28. Tougaard, J.: Stochastic resonance and signal detection in an energy detector–implications for biological receptor systems. Biol. Cybern. 83(5), 471–480 (2000)

    MATH  Article  Google Scholar 

  29. Balenzuela, P., Braun, H., Chialvo, D.R.: The ghost of stochastic resonance: an introductory review. Contemp. Phys. 53, 17–38 (2012)

    ADS  Article  Google Scholar 

  30. Wang, G., Ge, M., Lu, L., et al.: Study on propagation efficiency and fidelity of subthreshold signal in feed-forward hybrid neural network under electromagnetic radiation. Nonlinear Dyn. 103, 2627–2643 (2021)

    Article  Google Scholar 

  31. Ge, M.Y., Wang, G.W., Jia, Y.: Influence of the Gaussian colored noise and electromagnetic radiation on the propagation of subthreshold signals in feedforward neural networks. Sci. China Technol. Sci. 64(4), 847–857 (2021)

    ADS  Article  Google Scholar 

  32. Liu, Y., Xu, W., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Inform. Technol. Electron. Eng. 21(9), 1387–1396 (2020)

    Article  Google Scholar 

  33. Xu, Y., Liu, M., Zhu, Z., et al.: Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29(9), 098704 (2020)

    ADS  Article  Google Scholar 

  34. Yao, Z., Zhou, P., Zhu, Z., et al.: Phase synchronization between a light-dependent neuron and a thermosensitive neuron. Neurocomputing 423, 518–534 (2021)

    Article  Google Scholar 

  35. Bao, B., Wang, N., Xu, Q., et al.: A simple third-order memristive band pass filter chaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 64(8), 977–981 (2016)

    Article  Google Scholar 

  36. Bao, B., Xu, L., Wu, Z., et al.: Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua’s circuit. Int. J. Electron. 105(7), 1159–1169 (2018)

    Article  Google Scholar 

  37. Chen, M., Ren, X., Wu, H.G., et al.: Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inform. Technol. Electron. Eng. 20(12), 1706–1716 (2019)

    Article  Google Scholar 

  38. Chen, M., Qi, J.W., Wu, H.G., et al.: Bifurcation analyses and hardware experiments for bursting dynamics in non-autonomous memristive FitzHugh-Nagumo circuit. Sci. China Technol. Sci. 63(6), 1035–1044 (2020)

    ADS  Article  Google Scholar 

  39. Bao, B.C., Zhu, Y.X., Ma, J., et al.: Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64, 1107–1117 (2021)

    ADS  Article  Google Scholar 

  40. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63(11), 2328–2338 (2020)

    ADS  Article  Google Scholar 

  41. Zhang, Y., Zhou, P., Tang, J., et al.: Mode selection in a neuron driven by Josephson junction current in presence of magnetic field. Chin. J. Phys. 71, 72–84 (2021)

    MathSciNet  Article  Google Scholar 

  42. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102(3), 1849–1867 (2020)

    Article  Google Scholar 

  43. Hussain, I., Jafari, S., Ghosh, D., et al.: Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons. Nonlinear Dyn. 104, 2711–2721 (2021)

    Article  Google Scholar 

  44. Xie, Y., Yao, Z., Hu, X., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin. Phys. B 30, 120510 (2021)

    ADS  Article  Google Scholar 

  45. Xie, Y., Zhu, Z.G., Zhang, X.F., et al.: Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Physica Sinica 70(21), 210502 (2021)

    Article  Google Scholar 

  46. Hussain, I., Ghosh, D., Jafari, S.: Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network. Appl. Math. Comput. 410, 126461 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Tagne, J.F., Edima, H.C., Njitacke, Z.T., et al.: Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur. Phys. J. Spec. Top. 231, 993–1004 (2022). https://doi.org/10.1140/epjs/s11734-021-00311-w

    Article  Google Scholar 

  48. Zhang, X., Yao, Z., Guo, Y., et al.: Target wave in the network coupled by thermistors. Chaos Solitons Fract. 142, 110455 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  49. Yao, Z., Wang, C.: Control the collective behaviors in a functional neural network. Chaos Solitons Fract. 152, 111361 (2021)

    MathSciNet  Article  Google Scholar 

  50. Siveke, I., Myoga, M.H., Grothe, B., et al.: Ambient noise exposure induces long-term adaptations in adult brainstem neurons. Sci. Rep. 11, 5139 (2021)

    ADS  Article  Google Scholar 

  51. Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos 20(05), 1567–1580 (2010)

    ADS  Article  Google Scholar 

  52. Murali, K., Lakshmanan, M., Chua, L.O.: The simplest dissipative nonautonomous chaotic circuit. IEEE Transact. Circ. Syst. I: Fundament. Theory App. 41(6), 462–463 (1994)

    MATH  Article  Google Scholar 

  53. Ma, X., Xu, Y.: Taming the hybrid synapse under energy balance between neurons. Chaos Solitons Fract. 159, 112149 (2022)

    MathSciNet  Article  Google Scholar 

  54. Zhou, P., Zhang, X., Ma, J.: How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. 108, 1681–2169 (2022)

    Article  Google Scholar 

  55. Xie, Y., Yao, Z., Ma, J.: Phase synchronization and energy balance between neurons. Front. Inform.Technol. Electron. Eng. (2022). https://doi.org/10.1631/FITEE.2100563

    Article  Google Scholar 

  56. Sarasola, C., Torrealdea, F.J., d’Anjou, A., et al.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. E 69, 011606 (2004)

    ADS  Article  Google Scholar 

  57. Hou, Y., Fang, P.: Synchronization and stability of two unbalanced rotors with fast antirotation considering energy balance. Math. Probl. Eng. 2015, 694145 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Wang, Y., Sun, G., Ren, G.: Diffusive field coupling induced synchronization between neural circuits under energy balance. Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac7bff

    Article  Google Scholar 

  59. Torrealdea, F.J., d’Anjou, A., Graña, M., et al.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)

    ADS  Article  Google Scholar 

  60. Yao, Z., Zhou, P., Alsaedi, A., et al.: Energy flow-guided synchronization between chaotic circuits. Appl. Math. Comput. 374, 124998 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the National Natural Science Foundation of China under the Grant Nos. 11765011.

Author information

Authors and Affiliations

Authors

Contributions

Ying Xie finished the definition of dynamical model and numerical results and figures; Jun Ma suggested this study, contributed to the writing of the original draft and editing of the final version, and explained the biophysical mechanism and numerical results.

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Ethical approval

This is a theoretical study. The Lanzhou University of Technological Research Ethics Committee has confirmed that no ethical approval is required.

Informed consent

All authors (Ying Xie and Jun Ma) agree to submit and publish this work on Journal of Biological Physics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ma, J. How to discern external acoustic waves in a piezoelectric neuron under noise?. J Biol Phys 48, 339–353 (2022). https://doi.org/10.1007/s10867-022-09611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09611-1

Keywords

  • Piezoelectric neuron
  • Noise
  • Hamilton energy
  • Firing patterns
  • Stochastic resonance