Skip to main content

Noise-induced collective dynamics in the small-world network of photosensitive neurons

Abstract

Photosensitive neurons can capture and convert external optical signals, and then realize the encoding signal. It is confirmed that a variety of firing modes could be induced under optical stimuli. As a result, it is interesting to explore the mode transitions of collective dynamics in the photosensitive neuron network under external stimuli. In this work, the collective dynamics of photosensitive neurons in a small-world network with non-synaptic coupling will be discussed with spatial diversity of noise and uniform noise applied on, respectively. The results prove that a variety of different collective electrical activities could be induced under different conditions. Under spatial diversity of noise applied on, a chimera state could be observed in the evolution, and steady cluster synchronization could be detected in the end; even the nodes in each cluster depend on the degree of each node. Under uniform noise applied on, the complete synchronization window could be observed alternately in the transient process, and steady complete synchronization could be detected finally. The potential mechanism is that continuous energy is pumped in the phototubes, and energy exchange and balance between neurons to form the resonance synchronization in the network with different noise applied on. Furthermore, it is confirmed that the evolution of collective dynamical behaviors in the network depends on the external stimuli on each node. Moreover, the bifurcation analysis for the single neuron model is calculated, and the results confirm that the electrical activities of single neuron are sensitive to different kinds of noise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Shenoy, K.V.: Neural population dynamics during reaching. Nature 487, 51–56 (2012)

    ADS  Article  Google Scholar 

  2. Kotaleski, J.H., Blackwell, K.T.: Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 11, 239–251 (2010)

    Article  Google Scholar 

  3. Stent, G.S.: Semantics and neural development. In: Sharma, C.S. (ed.) Organizing Principles of Neural Development. pp. 145–160. Springer (1984)

  4. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16, 233–242 (1985)

    ADS  MATH  Article  Google Scholar 

  5. Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)

    Article  Google Scholar 

  6. González-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh-Rose neuron model. Int. J Bifurcat. Chaos 17(9), 3071–3083 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  7. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  8. Gu, H.G., Pan, B.B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107–2126 (2015)

    MathSciNet  Article  Google Scholar 

  9. Gu, H.G., Pan, B.B., Li, Y.Y.: The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn. 82(3), 1191–1210 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  10. Mondal, A., Upadhyay, R.K.: Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking. Nonlinear Dyn. 91(2), 1275–1288 (2018)

    Article  Google Scholar 

  11. Lee, S.G., Kim, S.: Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Phys. Rev. E 60, 826–830 (1999)

    ADS  Article  Google Scholar 

  12. Wang, H.T., Sun, Y.J., Li, Y.C., Chen, Y.: Influence of autapse on mode-locking structure of a Hodgkin- Huxley neuron under sinusoidal stimulus. J. Theoret. Biol. 358, 25–30 (2014)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. Hauschildt, B., Janson, N.B., Balanov, A., Schoell, E.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74(5), 051906 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  14. Ma, J., Song, X.L., Tang, J., Wang, C.N.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  15. Ma, J., Wu, Y., Ying, H., Jia, Y.: Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons. Chin. Sci. Bull. 56, 151–157 (2011)

    Article  Google Scholar 

  16. Yang, J., Zhou, W.N., Shi, P., Yang, X.Q., Zhou, X.H., Su, H.Y.: Adaptive synchronization of delayed Markovian switching neural networks with Levy noise. Neurocomputing 156, 231–238 (2015)

    MATH  Article  Google Scholar 

  17. García-Ojalvo, J., Schimansky-Geier, L.: Noise-induced spiral dynamics in excitable media. Europhys. Lett. 47, 298–303 (1999)

    ADS  Article  Google Scholar 

  18. Upadhyay, R.K., Mondal, A., Teka, W.W.: Mixed mode oscillations and synchronous activity in noise induced modified Morris-Lecar neural system. Int. J. Bifurcat. Chaos 27(5), 1730019 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. Yu, W.T., Tang, J., Ma, J., Yang, X.Q.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. Europhys. Lett. 114, 50006 (2016)

    ADS  Article  Google Scholar 

  20. Wang, H.T., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85, 881–891 (2016)

    MathSciNet  Article  Google Scholar 

  21. Yao, Y.G., Yi, M., Hou, D.J.: Coherence resonance induced by cross-correlated Sine-Wiener noises in the FitzHugh–Nagumo neurons. Int. J. Mod. Phys. B 31, 1750204 (2017)

    ADS  Article  Google Scholar 

  22. Wang, Q., Zhang, H., Perc, M., Chen, G.R.: Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun. Nonlinear Sci. Numerm. Simul. 17, 3979–3988 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. Zhang, Y., Zhou, P., Yao, Z., Ma, J.: Resonance synchronisation between memristive oscillators and network without variable coupling. J. Phys. 95, 49 (2021)

    Google Scholar 

  24. Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    ADS  Article  Google Scholar 

  25. Zhao, H.Y., Huang, X.X., Zhang, X.B.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  26. Ma, J., Qin, H.X., Song, X.L., Chu, R.T.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    ADS  Article  Google Scholar 

  27. Sharma, S.K., Mondal, A., Mondal, A., Upadhyay, R.K., Ma, J.: Synchronization and pattern formation in a memristive diffusive neuron model. Int. J. Bifurcat. Chaos 31(11), 2130030 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  28. Xu, Y., Wang, C.N., Lv, M., Tang, J.: Local pacing, noise induced ordered wave in a 2D lattice of neurons. Neurocomputing 207, 398–407 (2016)

    Article  Google Scholar 

  29. Wu, F.Q., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Tech. Sci. 63(4), 625–636 (2020)

    Article  Google Scholar 

  30. Sun, X.J., Li, G.F.: Synchronization transitions induced by partial time delay in a excitatory–inhibitory coupled neuronal network. Nonlinear Dyn. 89, 2509–2520 (2017)

    MathSciNet  Article  Google Scholar 

  31. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    ADS  Article  Google Scholar 

  32. Hussain, I., Ghosh, D., Jafari, S.: Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network. Appl. Math. Comput. 410, 126461 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    MathSciNet  Article  Google Scholar 

  34. Xu, F., Zhang, J.Q., Fang, T.T., Huang, S.F., Wang, M.S.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92, 1395–1402 (2018)

    Article  Google Scholar 

  35. Nair, M.V., Muller, L.K., Indiveri, G.: A differential memristive synapse circuit for on-line learning in neuromorphic computing systems. Nano Futures 1, 035003 (2017)

  36. Pham, V.T., Jafari, S., Vaidyanathan, S., Volos, C., Wang, X.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)

    ADS  Article  Google Scholar 

  37. Liu, Z.L., Wang, C.N., Zhang, G., Zhang, Y.: Synchronization between neural circuits connected by hybrid synapse. Int. J. Mod. Phys. B 33(16), 1950170 (2019)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. Liu, Z.L., Wang, C.N., Jin, W.Y., Ma, J.: Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn. 97, 2661–2673 (2019)

    MATH  Article  Google Scholar 

  39. Rajagopal, K., Bayani, A., Khalaf, A.J.M., Namazi, K., Jafari, S.: A no-equilibrium memristive system with four-wing hyperchaotic attractor. AEU-Int. J. Electron. Commun. 95, 207–215 (2018)

    Article  Google Scholar 

  40. Ma, S.Y., Yao, Z., Zhang, Y., Ma, J.: Phase synchronization and lock between memristive circuits under field coupling. AEU-Int. J. Electron. Commun. 105, 177–185 (2019)

    Article  Google Scholar 

  41. Zhang, J.H., Liao, X.F.: Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. AEU-Int. J. Electron. Commun. 75, 82–90 (2017)

    Article  Google Scholar 

  42. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  43. Duan, L.X., Cao, Q.Y., Wang, Z.J., Su, J.Z.: Dynamics of neurons in the pre-Bötzinger complex under magnetic flow effect. Nonlinear Dyn. 94(3), 1961–1971 (2018)

    Article  Google Scholar 

  44. Meng, F.Q., Zeng, X.Q., Wang, Z.L.: Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic radiation. Nonlinear Dyn. 95(2), 1615–1625 (2019)

    MATH  Article  Google Scholar 

  45. Takembo, C.N., Mvogo, A., Fouda, H.P.E., Kofane, T.C.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95(2), 1067–1078 (2019)

    MATH  Article  Google Scholar 

  46. Takembo, C.N., Mvogo, A., Fouda, H.P.E., Kofane, T.C.: Wave pattern stability of neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 96(2), 1083–1093 (2019)

    Article  Google Scholar 

  47. Guo, S.L., Xu, Y., Wang, C.N., Jin, W.Y., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  48. Panahi, S., Rostami, Z., Rajagopal, K., Namazi, H., Jafari, S.: Complete dynamical analysis of myocardial cell exposed to magnetic flux. Chin. J. Phys. 64, 363–373 (2020)

    MathSciNet  Article  Google Scholar 

  49. Liu, Y., Xu, W.J., Ma, J., Alzahrani, F., Hobiny, A.: A new photosensitive neuron model and its dynamics. Front. Inform. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Article  Google Scholar 

  50. Fox, R.F., Gatland, I.R., Roy, R., Vemuri, G.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38(11), 5938–5940 (1988)

    ADS  Article  Google Scholar 

  51. Xu, C., Gao, J., Sun, Y.T., Huang, X.: Explosive or continuous: incoherent state determines the route to synchronization. Sci. Rep. 5, 12039 (2015)

    ADS  Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No.11805164 and the “Special Scientific Research Program of Shaanxi Provincial Education Department’’ No. 21JK1016”.

Author information

Authors and Affiliations

Authors

Contributions

Fan Li: conceptualization, methodology, calculation, writing—original draft preparation. Xiaola Li: calculation, software. Liqing Ren: draft preparation, software, validation.

Corresponding author

Correspondence to Fan Li.

Ethics declarations

Ethical approval

The study is purely theoretical and does not involve any experiment with animals that would require ethical approval.

Informed consent

The study does not involve any participants that would have to give their informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, X. & Ren, L. Noise-induced collective dynamics in the small-world network of photosensitive neurons. J Biol Phys 48, 321–338 (2022). https://doi.org/10.1007/s10867-022-09610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09610-2

Keywords

  • Photosensitive neurons
  • Non-synaptic coupling
  • Cluster synchronization
  • Complete synchronization
  • Resonance