Skip to main content
Log in

The effects of temperature on the dynamics of the biological neural network

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The nerve cells are responsible for transmitting messages through the action potential, which generates electrical stimulation. One of the methods and tools of electrical stimulation is infrared neural stimulation (INS). Since the mechanism of INS is based on electromagnetic radiation, it explains how a neuron is stimulated by the heat distribution which is generated by the laser. The present study is focused on modeling and simulating the conditions in which deformed temperature related to the Hodgkin and Huxley model can be effectively and safely used to activate the neurons, the fires of which depend on temperature. The results explain ionic channels in the single and network neurons, which behave differently when thermal stimulation is applied to the cell. It causes the variation of the pattern of the action potential in the Hodgkin-Huxley (HH) model. The stability of the phase-plane at high temperatures has lower fluctuations than at low temperatures, so the channel gates open and close faster. The behavior of these channels under various membrane temperatures shows that the firing rate increases with temperature. Also, the domain of the spikes reduces and the spikes occur faster with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  2. Sjodin, R.A., Mullins, L.J.: Oscillatory behavior of the squid axon membrane potential. J. Gen. Physiol. 42(1), 39–47 (1958)

    Article  Google Scholar 

  3. Guttman, R.: Temperature characteristics of excitation in space-clamped squid axons. J. Gen. Physiol. 49(5), 1007–1018 (1966)

    Article  Google Scholar 

  4. Tai, C., Degroat, W.C., Roppolo, J.R.: Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Trans. Biomed. Eng. 52, 1323–1332 (2005)

    Article  Google Scholar 

  5. Georgiev, G., Valova, I., Gueorguieva, N., Brady, D.: Simulating influence of channel kinetics and temperature on Hodgkin-Huxley threshold dynamics. Procedia Computer Science 36, 464–469 (2014)

    Article  Google Scholar 

  6. Korogod, S.M., Demianenko, L.E.: Temperature effects on non-TRP ion channels and neuronal excitability. Opera Medica et Physiologica 3, 84–92 (2017)

    Google Scholar 

  7. Rattay, F., Aberham, M.: Modeling axon membranes for functional electrical stimulation. IEEE Trans. Biomed. Eng. 40, 1201–1209 (1993)

    Article  Google Scholar 

  8. Kuang, S., Wang, J., Zeng, T., Cao, A.: Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Pramana 70, 183–190 (2008)

    Article  ADS  Google Scholar 

  9. Yuan, C., Zhao, T., Zhan, Y., Zhang, S., Liu, H., Zhang, Y.: Environmental impacts on Spiking Properties in Hodgkin-Huxley Neuron with Direct Current Stimulus. Chinese Phys. Lett. 26(11), 118701 (2009)

  10. Rattay, F.: Analysis of models for extracellular fiber stimulation. IEEE Trans. Biomed. Eng. 36(7), 676–682 (1989)

    Article  Google Scholar 

  11. Chernov, M., Roe, A.W.: Infrared neural stimulation: a new stimulation tool for central nervous system applications. Neurophotonics 1(1), (2014)

  12. Goldin, M.A., Mindlin, G.B.: Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus. PLoS Comput. Biol. 13(8), e1005699 (2017)

  13. Peixoto, H.M., Cruz, R., Moulin, T.C., Leo, R.N.: Modeling the effect of temperature on membrane response of light stimulation in optogenetically-targeted neurons. Front. Comput. Neurosci. 14, 5 (2020)

    Article  Google Scholar 

  14. Alexander, C.T., Paul, R.S., Jansen, E.D.: Optical stimulation of neurons. Current Molecular Imaging 3(2), 162–177 (2014)

    Google Scholar 

  15. Norton, B.J., Bowler, M.A., Wells, J.D., Keller, M.D.: Analytical approaches for determining heat distributions and thermal criteria for infrared neural stimulation. J. Biomed. Opt. 18(9), 098001 (2013)

  16. Xu, Y., Guo, Y., Ren, G., Ma, J.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

  17. Zhang, X., Yao, Z., Guo, Y., Wang, C.: Target wave in the network coupled by thermistors. Chaos, Solitons and Fractals 142, 110455 (2021)

  18. Sterratt, D., Graham, B., Gillies, A., Willshaw, D.: Principles of Computational Modelling in Neuroscience. Cambridge University Press (2011)

  19. Johnson, M.G., Chartier, S.: Spike neural models part I: the Hodgkin-Huxley model. Quant. Methods Psychol. 13(2), 105–119 (2017)

    Article  Google Scholar 

  20. Reinmuth, W.H.: Nernst-controlled currents in hanging-drop polarography. J. Am. Chem. Soc. 79(24), 6358–6360 (1957)

    Article  Google Scholar 

  21. Pickard, W.F.: Generalizations of the Goldman-Hodgkin-Katz equation. Math. Biosci. 30(1–2), 99–111 (1976)

    Article  Google Scholar 

  22. Cayce, J.M., Kao, C.C., Malphrus, J.D., Konrad, P.E., Mahadevan-Jansen, A., Jansen, E.D.: Infrared neural stimulation of thalamocortical brain slices. IEEE J. Sel. Top. Quantum Electron. 16(3), 565–572 (2009)

    Article  ADS  Google Scholar 

  23. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116(4), 424–448 (1952)

    Article  Google Scholar 

  24. Frankenhaeuser, B., Moore, L.E.: The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. 169, 431–437 (1963)

    Article  Google Scholar 

  25. Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  26. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  27. Yaghini, B.S., Asgharian, H., Safari, S., Nili, A.M.: FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model. Front. Neurosci. 8, 379 (2014)

    Google Scholar 

  28. Hyun, N.G., Hyun, K.H., Lee, K., Kaang, B.K.: Temperature dependence of action potential parameters in Aplysia neurons. Neurosignals 20(4), 252–264 (2012)

    Article  Google Scholar 

  29. Van Hook, M.J.: Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS ONE 15(4), e0232451 (2020)

  30. Kim, J., Connors, B.: High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front. Cell. Neurosci. 6, 27 (2012)

    Google Scholar 

  31. Graham, B.A., Brichta, A.M., Callister, R.J.: Recording temperature affects the excitability of mouse superficial dorsal horn neurons, in vitro. J. Neurophysiol. 99(5), 2048–2059 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Rezaei Karamati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, M.B., Karamati, M.R. The effects of temperature on the dynamics of the biological neural network. J Biol Phys 48, 111–126 (2022). https://doi.org/10.1007/s10867-021-09598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-021-09598-1

Keywords

Navigation