Skip to main content

Double-diffusion convective biomimetic flow of nanofluid in a complex divergent porous wavy medium under magnetic effects

Abstract

We explore the physical influence of magnetic field on double-diffusive convection in complex biomimetic (peristaltic) propulsion of nanofluid through a two-dimensional divergent channel. Additionally, porosity effects along with rheological properties of the fluid are also retained in the analysis. The mathematical model is developed by equations of continuity, momentum, energy, and mass concentration. First, scaling analysis is introduced to simplify the rheological equations in the wave frame of reference and then get the final form of equations after applying the low Reynolds number and lubrication approach. The obtained equations are solved analytically by using integration method. Physical interpretation of velocity, pressure gradient, pumping phenomena, trapping phenomena, heat, and mass transfer mechanisms are discussed in detail under magnetic and porous environment. The magnitude of velocity profile is reduced by increasing Grashof parameter. The bolus circulations disappeared from trapping phenomena for larger strength of magnetic and porosity medium. The magnitude of temperature profile and mass concentration are increasing by enhancing the Brownian motion parameter. This study can be productive in manufacturing non-uniform and divergent shapes of micro-lab-chip devices for thermal engineering, industrial, and medical technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Rao, A.R., Usha, S.: Peristaltic transport of two immiscible viscous fluids in a circular tube. J. Fluid Mech. 298, 271–285 (1995)

    ADS  Article  Google Scholar 

  2. 2.

    Misra, J., Pandey, S.: Peristaltic transport of a non-Newtonian fluid with a peripheral layer. Int. J. Eng. Sci. 37, 1841–1858 (1999)

    Article  Google Scholar 

  3. 3.

    Takagi, D., Balmforth, N.: Peristaltic pumping of viscous fluid in an elastic tube. J. Fluid Mech. 672, 196–218 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Herzburn, P.A., Irvine, R.L., Malinowski, K.C.: Biological treatment of hazardous waste in sequencing batch reactors. J. Water Pollut. Control Fed. 57(12), 1163–1167 (1985)

  5. 5.

    DeFlaun, M.F., Condee, C.W.: Electrokinetic transport of bacteria. J. Hazard. Mater. 55, 263–277 (1997)

    Article  Google Scholar 

  6. 6.

    Jaffrin, M., Shapiro, A.: Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 13–37 (1971)

    ADS  Article  Google Scholar 

  7. 7.

    Pozrikidis, C.: A study of peristaltic flow. J. Fluid Mech. 180, 515–527 (1987)

    ADS  Article  Google Scholar 

  8. 8.

    Tripathi, D., Bég, O.A.: Mathematical modelling of peristaltic propulsion of viscoplastic bio-fluids. Proc. Inst. Mech. Eng. [H] 228, 67–88 (2014)

    Article  Google Scholar 

  9. 9.

    Hayat, T., Ali, N., Asghar, S.: Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Phys. Lett. A 363, 397–403 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    Ali, N., Javid, K., Sajid, M., Anwar Bég, O.: Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel. Comput. Methods Biomech. Biomed. Engin. 19, 614–627 (2016)

    Article  Google Scholar 

  11. 11.

    Ali, N., Javid, K., Sajid, M., Hayat, T.: New concept about existence of Hartmann boundary layer in peristalsis through curved channel-asymptotic solution. Meccanica 51, 1783–1795 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Javid, K., Ali, N., Sajid, M.: Simultaneous effects of viscoelasticity and curvature on peristaltic flow through a curved channel. Meccanica 51, 87–98 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Turkyilmazoglu, M.: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces. Zeitschrift für Naturforschung A 71, 549–556 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Sheikholeslami, M., D Ganji, D.: Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica 21, 203–212 (2014)

  15. 15.

    Hayat, T., Abbasi, F., Al-Yami, M., Monaquel, S.: Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J. Mol. Liq. 194, 93–99 (2014)

    Article  Google Scholar 

  16. 16.

    Ebaid, A., Aly, E.H.: Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment. Comput. Math. Methods Med. 2013, (2013)

  17. 17.

    El-dabe, N.T., Moatimid, G., Hassan, M.A., Godh, W.A.: Wall properties of peristaltic MHD nanofluid flow through porous channel. Fluid Mech. Res. Int. 2, 00019 (2018)

    Google Scholar 

  18. 18.

    Abbasi, F., Shanakhat, I., Shehzad, S.: Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall current. Physica Scripta 94, 025001 (2019)

  19. 19.

    Hayat, T., Ahmed, B., Abbasi, F., Alsaedi, A.: Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J. Cent. South Univ. 26, 2543–2553 (2019)

    Article  Google Scholar 

  20. 20.

    Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press (1873)

  21. 21.

    Zhang, L., Bhatti, M.M., Michaelides, E.E.: Entropy generation in magnetized blood flow through a finite wavy channel under slip conditions. J. Non-Equilib. Thermodyn. 45(4), 419–429 (2020)

    ADS  Article  Google Scholar 

  22. 22.

    Abo-Elkhair, R.E., Bhatti, M.M., Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au-Cu nanoparticles) with moderate Reynolds number: an expanding horizon. Int. Commun. Heat Mass Transfer 123, 105228 (2021)

  23. 23.

    Bhatti, M.M.: Biologically inspired intra-uterine nanofluid flow under the suspension of magnetized gold (Au) nanoparticles: applications in nanomedicine. Inventions 6(2), 28 (2021)

    Article  Google Scholar 

  24. 24.

    Hayat, T., Ali, N.: Peristaltically induced motion of a MHD third grade fluid in a deformable tube. Physica A 370, 225–239 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    Mekheimer, K.S.: The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys. Lett. A 372, 1657–1665 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    Javid, K., Waqas, M., Asghar, Z., Ghaffari, A.: A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro-magneto-hydrodynamics effects. Comput. Methods Programs Biomed. 191, 105413 (2020)

  27. 27.

    Javid, K., Ali, N., Asghar, Z.: Rheological and magnetic effects on a fluid flow in a curved channel with different peristaltic wave profiles. J. Braz. Soc. Mech. Sci. Eng. 41, 1–14 (2019)

    Article  Google Scholar 

  28. 28.

    Javid, K., Ali, N., Asghar, Z.: Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects. Physica Scripta 94, 115226 (2019)

  29. 29.

    Javid, K., Khan, S.U.-D., Hassan, M., Saeed, U., Rizvi, S.T.R., Khan, S.U.-D.: Peristaltic transportation of fluid through simple and complex wavy nonuniform channels: a bioengineering application. Int. J. Multiscale Comput. Eng. 17, (2019)

  30. 30.

    Gaffar, S.A., Prasad, V.R., Reddy, E.K., Beg, O.A.: Thermal radiation and heat generation/absorption effects on viscoelastic double-diffusive convection from an isothermal sphere in porous media. Ain Shams Eng. J. 6, 1009–1030 (2015)

    Article  Google Scholar 

  31. 31.

    Shivappa Kotnurkar, A., Giddaiah, S.: Double diffusion on peristaltic flow of nanofluid under the influences of magnetic field, porous medium, and thermal radiation. Engineering Reports 2, e12111 (2020)

  32. 32.

    Akbar, N.S., Habib, M.B.: Peristaltic pumping with double diffusive natural convective nanofluid in a lopsided channel with accounting thermophoresis and Brownian moment. Microsyst. Technol. 25, 1217–1226 (2019)

    Article  Google Scholar 

  33. 33.

    Noreen, S., Waheed, S., Hussanan, A., Lu, D.: Entropy analysis in double-diffusive convection in nanofluids through electro-osmotically induced peristaltic microchannel. Entropy 21, 986 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Prakash, J., Sharma, A., Tripathi, D.: Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics. Pramana 94, 1–17 (2020)

    ADS  Article  Google Scholar 

  35. 35.

    Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    ADS  Article  Google Scholar 

  36. 36.

    Fung, Y. C., Yih, C. S.: Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)

  37. 37.

    Ahmed, K., Khan, W.A., Akbar, T., Rasool, G., Alharbi, S.O., Khan, I.: Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface. Fluids 6, 260 (2021)

    Article  Google Scholar 

  38. 38.

    Rasool, G., Shafiq, A., Alqarni, M.S., Wakif, A., Khan, I., Bhutta, M.S.: Numerical scrutinization of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer. Micromachines 12, 374 (2021)

    Article  Google Scholar 

  39. 39.

    Rasool, G., Shafiq, A.: Numerical exploration of the features of thermally enhanced chemically reactive radiative Powell–Eyring nanofluid flow via Darcy medium over non-linearly stretching surface affected by a transverse magnetic field and convective boundary conditions. Appl. Nanosci. 1–18 (2020)

  40. 40.

    Rasool, G., Chamkha, A.J., Muhammad, T., Shafiq, A., Khan, I.: Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propulsion and Power Research 9, 159–168 (2020)

    Article  Google Scholar 

  41. 41.

    Marin, M., Vlase, S., Paun, M.: Considerations on double porosity structure for micropolar bodies. AIP Advances 5, 037113 (2015)

  42. 42.

    Saeed, T., Abbas, I., Marin, M.: A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12, 488 (2020)

    Article  Google Scholar 

  43. 43.

    Abdelsalam, S.I., Sohail, M.: Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms. Pramana 94, 1–12 (2020)

    Article  Google Scholar 

  44. 44.

    Sadaf, H., Abdelsalam, S.I.: Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions. RSC Adv. 10, 15035–15043 (2020)

    ADS  Article  Google Scholar 

  45. 45.

    Eldesoky, I., Abdelsalam, S., Abumandour, R., Kamel, M., Vafai, K.: Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel. Appl. Math. Mech. 38, 137–154 (2017)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Eldesoky, I., Abdelsalam, S.I., El-Askary, W., El-Refaey, A., Ahmed, M.: Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience 9, 723–739 (2019)

    Article  Google Scholar 

  47. 47.

    Baslem, A., Sowmya, G., Gireesha, B., Prasannakumara, B., Rahimi-Gorji, M., Hoang, N.M.: Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation. J. Mol. Liq. 307, 112920 (2020)

  48. 48.

    Alam, M.W., Bhattacharyya, S., Souayeh, B., Dey, K., Hammami, F., Rahimi-Gorji, M., Biswas, R.: CPU heat sink cooling by triangular shape micro-pin-fin: numerical study. Int. Commun. Heat Mass Transfer 112, 104455 (2020)

  49. 49.

    Gowda, R.P., Kumar, R.N., Aldalbahi, A., Issakhov, A., Prasannakumara, B., Rahimi-Gorji, M., Rahaman, M.: Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk. Surfaces and Interfaces 22, 100864 (2021)

Download references

Acknowledgements

The authors received funding from the Researchers Supporting Project (RSP-2021/58), the King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mubashir Bhatti.

Ethics declarations

Ethical approval

N/A

Informed consent

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Hassan, M., Tripathi, D. et al. Double-diffusion convective biomimetic flow of nanofluid in a complex divergent porous wavy medium under magnetic effects. J Biol Phys (2021). https://doi.org/10.1007/s10867-021-09583-8

Download citation

Keywords

  • Divergent channel
  • Double-diffusive convection
  • Heat and mass transfer
  • Nanofluids
  • Peristaltic flow
  • Porous medium