Skip to main content

Heat transfer analysis for EMHD peristalsis of ionic-nanofluids via curved channel with Joule dissipation and Hall effects

Abstract

The objective of this research is to study the combined influences of applied electric and magnetic fields on the two-phase peristaltic motion of nanofluid through a curved channel. A two-phase model of a nanofluid, Maxwell’s model of thermal conductivity [1], and no-slip velocity and thermal boundary conditions have been used in this study. Hall effects, Joule heating (due to magnetic and electric fields), and viscous heating aspects are under consideration. Governing equations for the present flow configuration have been modeled and simplified by enforcing the lubrication scheme. Debye-Huckel approximation is used to obtain the analytical solution of the electric potential function (Poisson-Boltzmann equation). Resulting expressions are solved numerically through the NDSolve command in Mathematica and plotted in order to understand the effects of different dimensionless parameters on the temperature, stress, heat transmission rate, and fluid’s velocity. Graphical results demonstrated that the thermal transmission rate is augmented by increasing the Hartmann number, Brinkman number, and Debye-Huckel parameter while decreases for zeta potential ratio, Joule dissipation parameter, and electro-osmotic velocity. A decrease in axial velocity is noted near the lower wall for higher values of \({m}^{\ast}\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Maxwell, J.C.: A Treatise on Electricity and Magnetism. 2nd Edition, Cambridge: Oxford University Press 435–441 (1904)

  2. 2.

    Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles ASME, International Mechanical Engineering Congress and Exposition (1995)

  3. 3.

    Choi, S.U.S.: Enhancing thermal conductivity of fluid with nanofluids, in: D. A. Siginer, H. P. Wang (Eds.), Developments and applications of non-Newtonian flows. J. Heat Transf. 66, 99–105 (1995)

  4. 4.

    Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21, 58–64 (2000)

    Google Scholar 

  5. 5.

    Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    ADS  Google Scholar 

  6. 6.

    Ding, Y., Alias, H., Wen, D., Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Google Scholar 

  7. 7.

    Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Google Scholar 

  8. 8.

    Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    MATH  Google Scholar 

  9. 9.

    Izadi, M., Shahmardan, M.M., Rashidi, A.M.: Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink. Transp. Phenom. Nano Micro Scales 1, 53–63 (2013)

    Google Scholar 

  10. 10.

    Rudyak, Y., Krasnolutskii, S.L.: Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys. Lett. A 378, 1845–1849 (2014)

    ADS  Google Scholar 

  11. 11.

    Izadi, M., Behzadmehr, A., Shahmardan, M.M.: Effects of inclination angle on laminar mixed convection of a nanofluid flowing through an annulus. Chem. Eng. Commun. 202, 1693–1702 (2015)

    Google Scholar 

  12. 12.

    Mohebbi, R., Mehryan, S.A.M., Izadi, M., Mahian, O.: Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J. Therm. Anal. Calorim. 137, 1719–1733 (2019)

    Google Scholar 

  13. 13.

    Mohebbi, R., Izadi, M., Sidik, N.A.C., Najafi, G.: Natural convection heat transfer of nanofluid inside a cavity containing rough elements using lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 29, 3659–3684 (2019)

  14. 14.

    Bozorg, M.V., Siavashi, M.: Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int. J. Mech. Sci. 151, 842–857 (2019)

    Google Scholar 

  15. 15.

    Izadi, M.: Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chin. J. Chem. Eng. 28, 1203–1213 (2020)

    Google Scholar 

  16. 16.

    Izadi, M., Bastani, B., Sheremet, M.A.: Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv. Powder Tech. 31, 2493–2504 (2020)

    Google Scholar 

  17. 17.

    Latham, T.W.: Fluid Motion in a Peristaltic Pump (MS thesis), MIT, Cambridge, AMA (1966)

  18. 18.

    Shapiro, A.H., Jaffrin, M.Y., Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37, 799–825 (1969)

    ADS  Google Scholar 

  19. 19.

    Dobrolyubov, A.I., Douchy, G.: Peristaltic transport as the travelling deformation waves. J. Theoret. Biology 219, 55–61 (2002)

    ADS  Google Scholar 

  20. 20.

    Reddy, M.V.S., Mishra, M., Sreenadh, S., Rao, A.R.: Influence of lateral walls on peristaltic flow in a rectangular duct. J. Fluids Eng. 127, 824–827 (2005)

    Google Scholar 

  21. 21.

    Nadeem, S., Akbar, N.S: Effects of heat and mass transfer on peristaltic flow of Carreau fluid in a vertical annulus. Zeitschrift für Naturforschung A 65, 781–792 (2010)

  22. 22.

    Hayat, T., Abbasi, F.M., Yami, M.A., Monaquel, S.: Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects. J. Mol. Liq. 194, 93–99 (2014)

    Google Scholar 

  23. 23.

    Tanveer, A., Hayat, T., Alsaadi, F., Alsaedi, A.: Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls. Comput. Biology Med. 82, 71–79 (2017)

    Google Scholar 

  24. 24.

    Prakash, J., Tripathi, D., Tiwari, A.K., Sait, S.M., Ellahi, R.: Peristaltic pumping of nanofluids through a tapered channel in a porous environment: Applications in blood flow. Symmetry 11, 868 (2019)

    Google Scholar 

  25. 25.

    Kayani, S.M., Hina, S., Mustafa, M.: A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab. J. Sci. Eng. 45, 5179–5190 (2020)

    Google Scholar 

  26. 26.

    Nadeem, S., Akbar, N.S.: Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. J. Taiwan Inst. Chem. Eng. 41, 286–294 (2010)

    Google Scholar 

  27. 27.

    Hayat, T., Noreen, S., Alhothuali, M.S., Asghar, S., Alhomaidan, A.: Peristaltic flow under the effects of an induced magnetic field and heat and mass transfer. Int. J. Heat Mass Transf. 55, 443–452 (2012)

    MATH  Google Scholar 

  28. 28.

    Riaz, A., Ellahi, R., Nadeem, S.: Peristaltic transport of a Carreau fluid in a compliant rectangular duct. Alex. Eng. J. 53, 475–484 (2014)

    Google Scholar 

  29. 29.

    Babu, D.H., Narayana, P.V.S.: Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: A numerical study. J. Magnet. Magnet. Mater. 412, 185–193 (2016)

    ADS  Google Scholar 

  30. 30.

    Abbasi, F.M., Saba, Shehzad, S.A.: Heat transfer analysis for peristaltic flow of Carreau-Yasuda fluid through a curved channel with radial magnetic field. Int. J. Heat Mass Transf. 115, 777–783 (2017)

  31. 31.

    Eldabe, N.T.M., Moatimid, G.M., Hassan, M.A., Godh, W.A.: Wall properties of peristaltic MHD nanofluid flow through porous channel. Fluid Mech. Research Int. J. 2, 00019 (2018)

    Google Scholar 

  32. 32.

    Jawad, M., Shah, Z., Khan, A., Khan, W., Kumam, P., Islam, S.: Entropy generation and heat transfer analysis in MHD unsteady rotating flow for aqueous suspensions of carbon nanotubes with nonlinear thermal radiation and viscous dissipation effect. Entropy 21, 492 (2019)

    MathSciNet  ADS  Google Scholar 

  33. 33.

    Hayat, T., Ahmed, B., Abbasi, F.M., Alsaedi, A.: Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J. Cent. South Uni. 26, 2543–2553 (2019)

    Google Scholar 

  34. 34.

    Armaghani, T., Kasaeipoor, A., Izadi, M., Pop, I.: MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int. J. Numer. Methods Heat Fluid Flow 28, 2916–2941 (2018)

  35. 35.

    Izadi, M., Oztop, H.F., Sheremet, M.A., Mehryan, S.A.M., Abu-Hamdeh, N.: Coupled FHD-MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer. Heat Transf. Part A: Appl. 76, 479–498 (2019)

    ADS  Google Scholar 

  36. 36.

    Izadi, M., Mohebbi, R., Sajjadi, H., Delouei, A.A.: LTNE modeling of magneto-ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field: Phys. A: Stat. Mech. Appl. 535, 122394 (2019)

  37. 37.

    Izadi, M., Mohammadi, S.A., Mehryan, S.A.M., Yang, T., Sheremet, M.A.: Thermogravitational convection of magnetic micropolar nanofluid with coupling between energy and angular momentum equations. Int. J. Heat Mass Transf. 145, 118748 (2019)

  38. 38.

    Izadi, M., Sheremet, M.A., Mehryan, S.A.M., Pop, I., Öztop, H.F., Abu-Hamdeh, N.: MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int. Commun. Heat Mass Transf. 110, 104409 (2020)

  39. 39.

    Izadi, M., Ghalambaz, M., Mehryan, S.A.M.: Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance. Chin. J. Phys. 65, 377–388 (2020)

    MathSciNet  Google Scholar 

  40. 40.

    Izadi, M., Javanahram, M., Zadeh, S.M.H., Jing, D.: Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chin. J. Chem. Eng. 28, 329–339 (2020)

    Google Scholar 

  41. 41.

    Izadi, M., Sheremet, M.A., Mehryan, S.M.A.: Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium. Chin. J. Phys. 65, 447–458 (2020)

    MathSciNet  Google Scholar 

  42. 42.

    Anwar, T., Kumam, P., Khan, I., Thounthong, P.: Heat transfer analysis of unsteady natural convection flow of Oldroyd-B model in the presence of Newtonian heating and radiation heat flux. IEEE Access 8, 92479–92489 (2020)

    Google Scholar 

  43. 43.

    Eldabe, N.T., Moatimid, G.M., Abouzeid, M.Y., ElShekhipy, A.A., Abdallah, N.F.: A semianalytical technique for MHD peristalsis of pseudo plastic nanofluid with temperature-dependent viscosity: Application in drug delivery system. Heat Transf. 49, 424–440 (2020)

    Google Scholar 

  44. 44.

    Polevoi, V.V.: Electroosmotic phenomena in plant tissues. Biol. Bull. 30, 133–139 (2003)

    Google Scholar 

  45. 45.

    Chakraborty, S.: Augmentation of peristaltic micro-flows through electro-osmotic mechanisms. J. Phys. D 39, 5356–5363 (2006)

    ADS  Google Scholar 

  46. 46.

    Bhansali, S., Vasudev, A.: MEMS for Biomedical Applications. Woodhead Publishing Series in Biomaterials, USA (2012)

    Google Scholar 

  47. 47.

    Tripathi, D., Sharma, A., Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of joule heating and helmholtzsmoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)

    Google Scholar 

  48. 48.

    Akbar, N.S., Shoaib, M., Tripathi, D., Bhushan, S., Bég, O.A.: Analytical approach for entropy generation and heat transfer analysis of CNT-nanofluids through ciliated porous medium. J. Hydrodynam. 30, 296–306 (2018)

    ADS  Google Scholar 

  49. 49.

    Basant, K.J., Michael, O.O.: Electromagnetic natural convection flow in a vertical microchannel with Joule heating: exact solution. J. Taibah Uni. Sci. 12, 661–668 (2018)

    Google Scholar 

  50. 50.

    Narla, V.K., Tripathi, D., Bég, O.A.: Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics: mathematical modeling. J. Biomech. Eng. 141, 021003 (2019)

  51. 51.

    Noreen, S., Quratulain, Tripathi, D.: Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium. Thermal Sci. Eng. Process 11, 254–262 (2019)

  52. 52.

    Narla, V.K., Tripathi, D., Sekhar, G.P.R.: Time-dependent analysis of electroosmotic fluid flow in a microchannel. J. Eng. Math. 114, 177–196 (2019)

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Waheed, S., Noreen, S., Hussanan, A.: Study of heat and mass transfer in electroosmotic flow of third order fluid through peristaltic microchannels. Appl. Sci. 9, 2164 (2019)

    Google Scholar 

  54. 54.

    Noreen, S., Waheed, S., Hussanan, A.: Peristaltic motion of MHD nanofluid in an asymmetric micro-channel with Joule heating, wall flexibility and different zeta potential. Bound. Value Problems 2019, 12 (2019)

    MathSciNet  Google Scholar 

  55. 55.

    Waheed, S., Noreen, S., Tripathi, D., Lu, D.C.: Electrothermal transport of third-order fluids regulated by peristaltic pumping. J. Biol. Phys. 46, 45–65 (2020)

    Google Scholar 

  56. 56.

    Noreen, S., Waheed, S., Hussanan, A., Lu, D.C.: Entropy analysis in double-diffusive convection in nanofluids through electro-osmotically induced peristaltic microchannel. Entropy 21, 986 (2019)

    MathSciNet  ADS  Google Scholar 

  57. 57.

    Ijaz, N., Zeeshan, A., Rehman, S.U.: Effect of electro-osmosis and mixed convection on nano-bio-fluid with non-spherical particles in a curved channel. Mech. Industry 19, 108 (2018)

    ADS  Google Scholar 

  58. 58.

    Narla, V.K., Tripathi, D.: Electroosmosis modulated transient blood flow in curved microvessels: Study of a mathematical model. Microvas. Research 123, 25–34 (2019)

    Google Scholar 

  59. 59.

    Narla, V.K., Tripathi, D., Bég, O.A.: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Therm. Sci. Eng. Prog. 15, 100424 (2020)

Download references

Acknowledgements

Authors acknowledge the support of Higher Education Commission (HEC) of Pakistan via Project 7395/Federal/NRPU/R&D/HEC/2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabir Ali Shehzad.

Ethics declarations

Ethics approval

This study does not involve any organization. So, no need for ethical approval.

Consent to participate

No individual participants are included in this study and no informed consent needs to be obtained.

Conflict of interest

The authors have declared that they have no conflict of interest for this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saba, Abbasi, F.M. & Shehzad, S.A. Heat transfer analysis for EMHD peristalsis of ionic-nanofluids via curved channel with Joule dissipation and Hall effects. J Biol Phys 47, 455–476 (2021). https://doi.org/10.1007/s10867-021-09582-9

Download citation

Keywords

  • Peristaltic flow
  • Debye-Huckel approximation
  • Nanofluids
  • Hall current
  • Joule heating