Skip to main content

Analysis of the effects of magnetic levitation to simulate microgravity environment on the Arp2/3 complex pathway in macrophage

Abstract

With dwindling natural resources on earth, current and future generations will need to explore space to new planets that will require travel under no or varying gravity conditions. Hence, long-term space missions and anticipated impacts on human biology such as changes in immune function are of growing research interest. Here, we reported new findings on mechanisms of immune response to microgravity with a focus on macrophage as a cellular model. We employed a superconducting magnet to generate a simulated microgravity environment and evaluated the effects of simulated microgravity on RAW 264.7 mouse macrophage cell line in three time frames: 8, 24, and 48 h. As study endpoints, we measured cell viability, phagocytosis, and used next-generation sequencing to explore its changing mechanism. Macrophage cell viability and phagocytosis both showed a marked decrease under microgravity. The differentially expressed genes (DEG) were identified in two ways: (1) gravity-dependent DEG, compared μg samples and 1 g samples at each time point; (2) time-dependent DEG, compared time-point samples within the same gravitational field. Through transcriptome analysis and confirmed by molecular biological verification, our findings firstly suggest that microgravity might affect macrophage phagocytosis by targeting Arp2/3 complex involved cytoskeleton synthesis and causing macrophage immune dysfunction. Our findings contribute to an emerging body of scholarship on biological effects of space travel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials. RNA-seq reads have been deposited into NCBI SRA database (PRJNA551509).

References

  1. 1.

    Sonnenfeld, G., Butel, J.S., Shearer, W.T.: Effects of the space flight environment on the immune system. Rev. Environ. Health 18, 1–17 (2003)

    Article  Google Scholar 

  2. 2.

    Cervantes, J.L., Hong, B.Y.: Dysbiosis and immune dysregulation in outer space. Int. Rev. Immunol. 35, 67–82 (2015)

    Google Scholar 

  3. 3.

    Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999)

    Article  Google Scholar 

  4. 4.

    Wynn, T.A., Chawla, A., Pollard, J.W.: Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    Zhang, N., Zheng, X.M., Couvee, G., et al.: Galactose supramolecular docking orchestrates macrophage phenotype. Cell. Mol. Immunol. 17, 1–3 (2020)

    Article  Google Scholar 

  6. 6.

    Zhu, C., Chen, W., Lou, J., et al.: Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019)

    Article  Google Scholar 

  7. 7.

    Yu W.T., Su X.X., Li M.X., et al.: Three-dimensional mechanical microenvironment enhanced osteogenic activity of mesenchymal stem cells-derived exosomes. Chem. Eng. J. 417, 128040 (2021)

  8. 8.

    Shi, N.Y., Li, Y.H., Chang, L., et al.: A 3D, magnetically actuated, aligned collagen fiber hydrogel platform recapitulates physical microenvironment of myoblasts for enhancing myogenesis. Small Methods 5, 2100276 (2021)

    Article  Google Scholar 

  9. 9.

    Guo, H., Zhang, T., Yu, Y., et al.: Cancer physical hallmarks as new targets for improved immunotherapy. Trends Cell Biol. 31, 7 (2021)

    Article  Google Scholar 

  10. 10.

    Ma, Y.F., Han, T., Yang, Q.X., et al.: Viscoelastic cell microenvironment: hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv. Funct. Mater. 31, 2100848 (2021)

    Article  Google Scholar 

  11. 11.

    Li, J., Wang, S.F., Li, Y.H., et al.: miRNA-mediated macrophage behaviors responding to matrix stiffness and ox-LDL. J. Cell. Physiol. 235, 6139–6153 (2020)

    Article  Google Scholar 

  12. 12.

    Kaur, I., Simons, E.R., Castro, V.A., et al.: Changes in monocyte functions of astronauts. Brain Behav. Immun. 19, 547–554 (2005)

    Article  Google Scholar 

  13. 13.

    Lynch, S.V., Matin, A.: Travails of microgravity, man and microbes in space. Biologist 52, 80–87 (2005)

    Google Scholar 

  14. 14.

    Sonnenfeld, G.: The immune system in space, including Earth-based benefits of space-based research. Curr. Pharm. Biotechnol. 6, 343–349 (2005)

    Article  Google Scholar 

  15. 15.

    Mermel, L.A.: Infection prevention and control during prolonged human space travel. Clin. Infect. Dis. 56, 123–130 (2012)

    Article  Google Scholar 

  16. 16.

    Crucian, B., Simpson, R.J., Mehta, S., et al.: Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav. Immun. 39, 23–32 (2014)

    Article  Google Scholar 

  17. 17.

    Verhaar, A.P., Hoekstra, E., Tjon, A., et al.: Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity. Sci. Rep. 4, 5468 (2014)

    Article  Google Scholar 

  18. 18.

    Barrila, J., Ott, C.M., Leblanc, C., et al.: Spaceflight modulates gene expression in the whole blood of astronauts. NPJ Microgravity 2, 16039–16041 (2016)

    Article  Google Scholar 

  19. 19.

    Tauber, S., Lauber, B.A., Paulsen, K., et al.: Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 12, 1–28 (2017)

    Article  Google Scholar 

  20. 20.

    Chowdhury, B., Seetharam, A., Wang, Z., et al.: A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells. PLoS ONE 11, 1–29 (2016)

    Google Scholar 

  21. 21.

    Thiel C.S., De Zélicourt D., Tauber S., et al.: Rapid adaptation to microgravity in mammalian macrophage cells. Sci. Rep. 7, 1–13 (2017)

    Article  Google Scholar 

  22. 22.

    Teodori, L., Campanella, L., Costa, A., et al.: Skeletal muscle atrophy in simulated microgravity might be triggered by immune-related microRNAs. Front. Physiol. 9, 1926 (2018)

    Article  Google Scholar 

  23. 23.

    Fu, H., Su, F., Zhu, J., et al.: Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. Life Sci. Space Res. 24, 1–8 (2020)

    ADS  Article  Google Scholar 

  24. 24.

    Guevorkian, K., Valles, J.M.: Swimming paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. Proc. Natl. Acad. Sci. U.S.A. 103, 13051–13056 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    Herranz, R., Larkin, O.J., Dijkstra, C.E., et al.: Microgravity simulation by diamagnetic levitation, effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012)

    Article  Google Scholar 

  26. 26.

    Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic, A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014)

    Article  Google Scholar 

  27. 27.

    Li, B., Dewey, C.N.: RSEM, accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011)

    Article  Google Scholar 

  28. 28.

    Li, B., Ruotti, V., Stewart, R.M., et al.: RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2009)

    Article  Google Scholar 

  29. 29.

    Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)

    Article  Google Scholar 

  30. 30.

    Huang, D.W., Sherman, B.T., Lempicki, R.A.: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009)

    Article  Google Scholar 

  31. 31.

    Padilla, E.H., Crauwels, P., Bergner, T., et al.: mir-124-5p regulates phagocytosis of human macrophages by targeting the actin cytoskeleton via the ARP2/3 Complex. Front. Immunol. 10, 1–15 (2019)

    Article  Google Scholar 

  32. 32.

    Junemann, A., Fili, V., Winterhoff, M., et al.: A diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc. Natl. Acad. Sci. U.S.A 113, E7464–E7473 (2016)

    Article  Google Scholar 

  33. 33.

    Pizarro-Cerd, J., Chorev, D.S., Geiger, B., et al.: The diverse family of Arp2/3 complexes. Trends in Cell Biol. 27, 93–100 (2017)

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (31800781, 61927810, 12002285), China Postdoctoral Science Foundation (2018M631198), Key Research and Development Program of Shaanxi (2020JZ-11), Natural Science Basic Research Program of Shaanxi (2020JQ-126), Fundamental Research Funds for the Central Universities (G2020KY05203), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (ZZ2018240).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 212 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, N., Di, J. et al. Analysis of the effects of magnetic levitation to simulate microgravity environment on the Arp2/3 complex pathway in macrophage. J Biol Phys 47, 323–335 (2021). https://doi.org/10.1007/s10867-021-09581-w

Download citation

Keywords

  • Microgravity
  • Macrophage
  • RNA-seq
  • Differentially expressed genes