Skip to main content

Comparison of the histology and stiffness of ventricles in Anura of different habitats

Abstract

Vertebrate hearts have undergone marked morphological and structural changes to adapt to different environments and lifestyles as part of the evolutionary process. Amphibians were the first vertebrates to migrate to land. Transition from aquatic to terrestrial environments required the ability to circulate blood against the force of gravity. In this study, we investigated the passive mechanical properties and histology of the ventricles of three species of Anura (frogs and toads) from different habitats, Xenopus laevis (aquatic), Pelophylax nigromaculatus (semiaquatic), and Bufo japonicus formosus (terrestrial). Pressure-loading tests demonstrated stiffer ventricles of P. nigromaculatus and B. j. formosus compared X. laevis ventricles. Histological analysis revealed a remarkable difference in the structure of cardiac tissue: thickening of the compact myocardium layer of P. nigromaculatus and B. j. formosus and enrichment of the collagen fibers of B. j. formosus. The amount of collagen fibers differed among the species, as quantitatively confirmed by second-harmonic generation light microscopy. No significant difference was observed in cardiomyocytes isolated from each animal, and the sarcomere length was almost the same. The results indicate that the ventricles of Anura stiffen during adaptation to life on land.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data are included in the electronic supplementary material.

References

  1. 1.

    Ostadal, B.: Comparative aspects of the cardiac blood supply. Adv. Organ Biol. 7, 91–110 (1999). https://doi.org/10.1016/S1569-2590(08)60164-0

    Article  Google Scholar 

  2. 2.

    Victor, S., Nayak, V.M., Rajasingh, R.: Evolution of the ventricles. Tex. Heart Inst. J. 26, 168–175 (1999)

    Google Scholar 

  3. 3.

    Borlaug, B.A.: The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 11, 507–515 (2014). https://doi.org/10.1038/nrcardio.2014.83

    Article  Google Scholar 

  4. 4.

    van Heerebeek, L., Franssen, C.P., Hamdani, N., Verheugt, F.W., Somsen, G.A., Paulus, W.J.: Molecular and cellular basis for diastolic dysfunction. Curr. Heart Fail. Rep. 9, 293–302 (2012). https://doi.org/10.1007/s11897-012-0109-5

    Article  Google Scholar 

  5. 5.

    Paulus, W.J., Tschope, C.: A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013). https://doi.org/10.1016/j.jacc.2013.02.092

    Article  Google Scholar 

  6. 6.

    Angeja, B.G., Grossman, W.: Evaluation and management of diastolic heart failure. Circulation 107, 659–663 (2003). https://doi.org/10.1161/01.cir.0000053948.10914.49

    Article  Google Scholar 

  7. 7.

    Woerlee, G.M.: Common Perioperative Problems and the Anaesthetist. Springer, Dordrecht, Netherlands (2012)

    Google Scholar 

  8. 8.

    Samet, P., Bernstein, W.H., Nathan, D.A., Lopez, A.: Atrial contribution to cardiac output in complete heart block. Am J Cardiol. 16, 1–10 (1965). https://doi.org/10.1016/0002-9149(65)90002-0

    Article  Google Scholar 

  9. 9.

    Honda, T., Ujihara, Y., Hanashima, A., Hashimoto, K., Tanemoto, K., Mohri, S.: Turtle spongious ventricles exhibit more compliant diastolic property and possess larger elastic regions of connectin in comparison to rat compact left ventricles. Kawasaki Med. J. 44, 1–17 (2018). https://doi.org/10.11482/KMJ-E44(1)1

  10. 10.

    Camelliti, P., Borg, T.K., Kohl, P.: Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005). https://doi.org/10.1016/j.cardiores.2004.08.020

    Article  Google Scholar 

  11. 11.

    Zile, M.R., Baicu, C.F., Ikonomidis, J.S., Stroud, R.E., Nietert, P.J., Bradshaw, A.D., Slater, R., Palmer, B.M., Van Buren, P., Meyer, M., Redfield, M.M., Bull, D.A., Granzier, H.L., LeWinter, M.M.: Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131, 1247–1259 (2015). https://doi.org/10.1161/CIRCULATIONAHA.114.013215

    Article  Google Scholar 

  12. 12.

    Borbely, A., Falcao-Pires, I., van Heerebeek, L., Hamdani, N., Edes, I., Gavina, C., Leite-Moreira, A.F., Bronzwaer, J.G., Papp, Z., van der Velden, J., Stienen, G.J., Paulus, W.J.: Hypophosphorylation of the Stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 104, 780–786 (2009). https://doi.org/10.1161/CIRCRESAHA.108.193326

  13. 13.

    Burkhoff, D., Mirsky, I., Suga, H.: Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289, H501–H512 (2005). https://doi.org/10.1152/ajpheart.00138.2005

    Article  Google Scholar 

  14. 14.

    Klotz, S., Hay, I., Dickstein, M.L., Yi, G.H., Wang, J., Maurer, M.S., Kass, D.A., Burkhoff, D.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291, H403–H412 (2006). https://doi.org/10.1152/ajpheart.01240.2005

    Article  Google Scholar 

  15. 15.

    Ujihara, Y., Kanagawa, M., Mohri, S., Takatsu, S., Kobayashi, K., Toda, T., Naruse, K., Katanosaka, Y.: Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure. Nat. Commun. 10, 5754 (2019). https://doi.org/10.1038/s41467-019-13623-2

    ADS  Article  Google Scholar 

  16. 16.

    Sugita, S., Matsumoto, T.: Local distribution of collagen fibers determines crack initiation site and its propagation direction during aortic rupture. Biomech. Model. Mechanobiol. 17, 577–587 (2018). https://doi.org/10.1007/s10237-017-0979-2

    Article  Google Scholar 

  17. 17.

    Pasqualin, C., Gannier, F., Yu, A., Malécot, C.O., Bredeloux, P., Maupoil, V.: SarcOptiM for ImageJ: high-frequency online sarcomere length computing on stimulated cardiomyocytes. Am. J. Physiol. Cell Physiol. 311, C277–C283 (2016). https://doi.org/10.1152/ajpcell.00094.2016

    Article  Google Scholar 

  18. 18.

    Simons, J.R.: The blood pressure and the pressure pulses in the arterial arches of the frog (Rana temporaria) and the toad (Bufo bufo). J. Physiol. 137, 12–21 (1957). https://doi.org/10.1113/jphysiol.1957.sp005793

    Article  Google Scholar 

  19. 19.

    Spinale, F.G.: Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87, 1285–1342 (2007). https://doi.org/10.1152/physrev.00012.2007

    Article  Google Scholar 

  20. 20.

    Kajiya, F., Zamir, M., Carlier, S.: Cardiac hemodynamics, coronary circulation and interventional cardiology. Ann. Biomed. Eng. 33, 1728–1734 (2005). https://doi.org/10.1007/s10439-005-8777-x

    Article  Google Scholar 

  21. 21.

    Hillman, S.S.: Cardiovascular correlates of maximal oxygen consumption rates in anuran amphibians. J. Comp. Physiol. 109, 109–207 (1976). https://doi.org/10.1007/BF00689418

    Article  Google Scholar 

  22. 22.

    Maruyama, K.: Connectin, an elastic filamentous protein of striated muscle. Int. Rev. Cytol. 104, 81–114 (1986). https://doi.org/10.1016/s0074-7696(08)61924-5

    Article  Google Scholar 

  23. 23.

    Chung, C.S., Granzier, H.L.: Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J. Mol. Cell. Cardiol. 50, 731–739 (2011). https://doi.org/10.1016/j.yjmcc.2011.01.005

    Article  Google Scholar 

  24. 24.

    Methawasin, M., Strom, J.G., Slater, R.E., Fernandez, V., Saripalli, C., Granzier, H.: Experimentally increasing the compliance of titin through RNA binding motif- 20 (RBM20) inhibition improves diastolic function in a mouse model of heart failure with preserved ejection fraction. Circulation 134, 1085–1099 (2016). https://doi.org/10.1161/CIRCULATIONAHA.116.023003

    Article  Google Scholar 

  25. 25.

    Watanabe, K., Nair, P., Labeit, D., Kellermayer, M.S., Greaser, M., Labeit, S., Granzier, H.: Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J. Biol. Chem. 277, 11549–11558 (2002). https://doi.org/10.1074/jbc.M200356200

    Article  Google Scholar 

  26. 26.

    Granzier, H.L., Labeit, S.: The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94, 284–295 (2004). https://doi.org/10.1161/01.RES.0000117769.88862.F8

    Article  Google Scholar 

  27. 27.

    Hanashima, A., Hashimoto, K., Ujihara, Y., Honda, T., Yobimoto, T., Kodama, A., Mohri, S.: Complete primary structure of the I-band region of connectin at which mechanical property is modulated in zebrafish heart and skeletal muscle. Gene 596, 19–26 (2017). https://doi.org/10.1016/j.gene.2016.10.010

    Article  Google Scholar 

  28. 28.

    Senni, M., Tribouilloy, C.M., Rodeheffer, R.J., Jacobsen, S.J., Evans, J.M., Bailey, K.R., Redfield, M.M.: Congestive heart failure in the community: a study of all incident cases in Olmsted County, Minnesota, in 1991. Circulation 98, 2282–2289 (1998). https://doi.org/10.1161/01.cir.98.21.2282

    Article  Google Scholar 

  29. 29.

    Wei, J.Y.: 1992 Age and the cardiovascular system. N. Engl. J. Med. 327, 1735–1739 (1992). https://doi.org/10.1056/NEJM199212103272408

    Article  Google Scholar 

  30. 30.

    Gaasch, W.H.: Diagnosis and treatment of heart failure based on left ventricular systolic or diastolic dysfunction. JAMA 271, 1276–1280 (1994). https://doi.org/10.1001/jama.1994.03510400062033

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Amphibian Research Center of Hiroshima University for providing B. j. formosus.

Funding

This study was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Number JP17H04740 and JP19K22962 to Y. U., JP18K12055 to M. N.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Affiliations

Authors

Contributions

M. I., Y.U., and M.N. planned and designed the study and wrote the manuscript. M. I. performed the majority of experiments. S.S. provided the technique to observe SHG light from collagen. All authors have read and reviewed the manuscript, and gave final approval for publication.

Corresponding author

Correspondence to Yoshihiro Ujihara.

Ethics declarations

Ethics approval

All animal experiments were conducted under the guidelines specified by the Guide for Animal Experimentation, Nagoya Institute of Technology.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 426 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, M., Ujihara, Y., Sugita, S. et al. Comparison of the histology and stiffness of ventricles in Anura of different habitats. J Biol Phys 47, 287–300 (2021). https://doi.org/10.1007/s10867-021-09579-4

Download citation

Keywords

  • Passive mechanical properties
  • Vertebrate heart
  • Amphibian heart
  • Evolution
  • Adaptation
  • Terrestrialization