Skip to main content
Log in

Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The morphology and proliferation of eukaryotic cells depend on their microenvironment. When electrospun mats are used as tissue engineering scaffolds, the local alignment of the fibers has a pronounced influence on cells. Here we analyzed the morphology of the patterned mats produced by electrospinning of PLA-gelatin blend onto a conductive grid. We investigated the cellular morphology and proliferation of two cell lines (keratinocytes HaCaT and fibroblasts NIH 3T3) on the patterned mats. The non-patterned mats of the same chemical composition were used as control ones. The HaCaT cells predominantly grew on convex areas of the patterned mats along with increasing their nucleus area and decreasing cell area. The 3T3 cells had a lower proliferative rate when grown on the patterned mats. The results can be valuable for further development of the procedures, which allow the patterned electrospun mats development as well as for the investigation of cell-substrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xue, J., Wu, T., Dai, Y., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  Google Scholar 

  2. Jun, I., Han, H.-S., Edwards, J.R., Jeon, H.: Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int. J. Mol. Sci. 19, 745 (2018). https://doi.org/10.3390/ijms19030745

  3. Li, Y., Bou-Akl, T.: Electrospinning in tissue engineering. In: Electrospinning - Material, Techniques, and Biomedical Applications. InTech (2016)

  4. Hanumantharao, R.: Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fibers. 7, 66 (2019). https://doi.org/10.3390/fib7070066

  5. Zhang, D., Chang, J.: Patterning of electrospun fibers using electroconductive templates. Adv. Mater. 19, 3662–3667 (2007). https://doi.org/10.1002/adma.200700896

    Article  Google Scholar 

  6. Park, S.M., Eom, S., Choi, D., Han, J., Park, S.J., Kim, D.S.: Direct fabrication of spatially patterned or aligned electrospun nanofiber mats on dielectric polymer surfaces. Chem. Eng, J. 335, 712–719 (2018). https://doi.org/10.1016/j.cej.2017.11.018

  7. Shin, Y.M., Shin, H.J., Heo, Y., Jun, I., Chung, Y.W., Kim, K., Lim, Y.M., Jeon, H., Shin, H.: Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. J. Mater. Chem. B 5, 318–328 (2017). https://doi.org/10.1039/c6tb02258h

    Article  Google Scholar 

  8. Li, H., Xu, Y., Xu, H., Chang, J.: Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. J. Mater. Chem. B 2, 5492–5510 (2014). https://doi.org/10.1039/C4TB00913D

    Article  Google Scholar 

  9. Zucchelli, A., Fabiani, D., Gualandi, C., Focarete, M.L.: An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials. J. Mater. Sci. 44, 4969–4975 (2009). https://doi.org/10.1007/s10853-009-3759-2

    Article  ADS  Google Scholar 

  10. Denchai, A., Tartarini, D., Mele, E.: Cellular response to surface morphology: electrospinning and computational modeling. Front. Bioeng. Biotechnol. 6, 155 (2018). https://doi.org/10.3389/fbioe.2018.00155

    Article  Google Scholar 

  11. Kang, Y., Chen, P., Shi, X., Zhang, G., Wang, C.: Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer (Guildf). 156, 250–260 (2018). https://doi.org/10.1016/j.polymer.2018.10.009

  12. Liu, P., Chen, N., Jiang, J., Wen, X.: New surgical meshes with patterned nanofiber mats. RSC Adv. 9, 17679–17690 (2019). https://doi.org/10.1039/c9ra01917k

    Article  ADS  Google Scholar 

  13. Mahjour, S.B., Sefat, F., Polunin, Y., Wang, L., Wang, H.: Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. J. Biomed. Mater. Res. - Part A. 104, 1479–1488 (2016). https://doi.org/10.1002/jbm.a.35676

    Article  Google Scholar 

  14. Vaquette, C., Cooper-White, J.J.: Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 7, 2544–2557 (2011). https://doi.org/10.1016/j.actbio.2011.02.036

    Article  Google Scholar 

  15. Sokolova, A.I., Pavlova, E.R., Khramova, Y.V., Klinov, D.V., Shaitan, K.V., Bagrov, D.V.: Imaging human keratinocytes grown on electrospun mats by scanning electron microscopy. Microsc. Res. Tech. 82, 544–549 (2019). https://doi.org/10.1002/jemt.23198

    Article  Google Scholar 

  16. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an Open-Source Platform for Biological-Image Analysis (2012)

  17. Martins, A., Alves da Silva, M.L., Faria, S., Marques, A.P., Reis, R.L., Neves, N.M.: The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromol. Biosci. 11, 978–987 (2011). https://doi.org/10.1002/mabi.201100012

    Article  Google Scholar 

  18. Pavlova, E.R., Bagrov, D.V., Monakhova, K.Z., Piryazev, A.A., Sokolova, A.I., Ivanov, D.A., Klinov, D.V.: Tuning the properties of electrospun polylactide mats by ethanol treatment. Mater. Des. 181, 108061 (2019). https://doi.org/10.1016/j.matdes.2019.108061

    Article  Google Scholar 

  19. Pavlova, E.R., Bagrov, D.V., Khramova, Y.V., Klinov, D.V., Shaitan, K.V.: Nuclei deformation in HaCaT keratinocytes cultivated on aligned fibrous substrates. Mosc. Univ. Biol. Sci. Bull. 72, 85–90 (2017). https://doi.org/10.3103/S0096392517020043

    Article  Google Scholar 

  20. Meade, A.D., Lyng, F.M., Knief, P., Byrne, H.J.: Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in-vitro cultured human keratinocytes. Anal. Bioanal. Chem. 387, 1717–1728 (2007). https://doi.org/10.1007/s00216-006-0876-5

    Article  Google Scholar 

  21. Sokolova, A.I., Pavlova, E.R., Khramova, Y.V., Bagrov, D.V., Klinov, D.V., Shaitan, K.V.: Application of fluorescence and scanning electron microscopy for the investigation of cell contact guidance. AIP Conf. Proc 2064(20004), 1–5 (2019). https://doi.org/10.1063/1.5087660

    Article  Google Scholar 

  22. Chen, J., Backman, L.J., Zhang, W., Ling, C., Danielson, P.: Regulation of keratocyte phenotype and cell behavior by substrate stiffness. ACS Biomater. Sci. Eng. 6, 5162–5171 (2020). https://doi.org/10.1021/acsbiomaterials.0c00510

    Article  Google Scholar 

  23. Wala, J., Das, S.: Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy. Biomech. Model. Mechanobiol. 19, 1523–1536 (2020). https://doi.org/10.1007/s10237-019-01285-4

    Article  Google Scholar 

  24. Chen, B., Co, C., Ho, C.C.: Cell shape dependent regulation of nuclear morphology. Biomaterials. 67, 129–136 (2015). https://doi.org/10.1016/j.biomaterials.2015.07.017

    Article  Google Scholar 

  25. Sokolova, A.I., Pavlova, E.R., Bagrov, D.V., Klinov, D.V., Shaitan, K.V.: Dye adsorption onto electrospun films made of polylactic acid and gelatin. Mol. Cryst. Liq. Cryst. 669, 126–133 (2018). https://doi.org/10.1080/15421406.2018.1563945

    Article  Google Scholar 

  26. Xu, H., Li, H., Ke, Q., Chang, J.: An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering. ACS Appl. Mater. Interfaces 7, 8706–8718 (2015). https://doi.org/10.1021/acsami.5b00996

    Article  Google Scholar 

  27. Nedjari, S., Awaja, F., Altankov, G.: Three dimensional honeycomb patterned fibrinogen based Nanofibers induce substantial osteogenic response of mesenchymal stem cells. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-15956-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Sergeevna Bogdanova.

Ethics declarations

Funding

This work was supported by the Russian Science Foundation, projects №17-75-30064 (experiments with the PLA-gelatin mats) and №19-74-00037 (experiments with the PLA-BSA mats).

Ethical approval

Ethical approval is not applicable, because this article does not contain any studies with human or animal subjects.

Informed consent

Informed consent is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, A.S., Sokolova, A.I., Pavlova, E.R. et al. Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats. J Biol Phys 47, 205–214 (2021). https://doi.org/10.1007/s10867-021-09574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-021-09574-9

Keywords

Navigation