Skip to main content

Interaction of chloramphenicol with titin I27 probed using single-molecule force spectroscopy


Titin is a giant elastic protein which is responsible for passive muscle stiffness when muscle sarcomeres are stretched. Chloramphenicol, besides being a broad-spectrum antibiotic, also acts as a muscle relaxant. Therefore, it is important to study the interaction between titin I27 and chloramphenicol. We investigated the interaction of chloramphenicol with octamer of titin I27 using single-molecule force spectroscopy and fluorescence spectroscopy. The fluorescence data indicated that binding of chloramphenicol with I27 results in fluorescence quenching. Furthermore, it is observed that chloramphenicol binds to I27 at a particular concentration (\(\sim \) 40 μM). Single-molecule force spectroscopy shows that, in the presence of 40 μM chloramphenicol concentration, the I27 monomers become mechanically stable, resulting in an increment of the unfolding force. The stability was further confirmed by chemical denaturation experiments on monomers of I27, which corroborate the evidence for enhanced mechanical stability at 40 μM drug concentration. The free energy of stabilization for I27 (wild type) was found to be 1.95 ± 0.93 kcal/mole and I27 with 40 μM drug was 3.25 ± 0.63 kcal/mole. The results show a direct effect of the broad-spectrum antibiotic chloramphenicol on the passive elasticity of muscle protein titin. The I27 is stabilized both mechanically and chemically by chloramphenicol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Oravcová, J., Lindner, W.: Protein–drug interactions. Encyclopedia of Analytical chemistry: Applications Theory and Instrumentation. (2006)

  2. 2.

    Tomaszewski, T.: Side-effects of chloramphenicol and aureomycin. Br. Med. J 1(4703), 388 (1951).

    Article  Google Scholar 

  3. 3.

    Manten, A.: Side effects of antibiotics. Veterinary Quarterly 3(4), 179 (1981).

    Article  Google Scholar 

  4. 4.

    Krasner, J.: Drug-protein interaction. Pediatr. Clin. North Am. 19 (1), 51 (1972).

    Article  Google Scholar 

  5. 5.

    Wiest, D.B., Cochran, J.B., Tecklenburg, F.W.: Chloramphenicol toxicity revisited: a 12-year-old patient with a brain abscess. J. Pediatr. Pharmacol. Ther. 17(2), 182 (2012).

    Article  Google Scholar 

  6. 6.

    Dajani, A.S., Kauffman, R.E.: The renaissance of chloramphenicol. Pediatr. Clin. North Am. 28(1), 195 (1981).

    Article  Google Scholar 

  7. 7.

    Vuignier, K., Schappler, J., Veuthey, J.L., Carrupt, P.A., Martel, S.: Drug–protein binding: a critical review of analytical tools. Analytical and Bioanalytical Chemistry 398(1), 53 (2010).

    Article  Google Scholar 

  8. 8.

    Chignell, C.F.: In: Concepts in Biochemical Pharmacology., pp 187–212. Springer, Berlin (1971)

  9. 9.

    Oravcova, J., Bo, B., Lindner, W., et al.: Drug-protein binding studies new trends in analytical and experimental methodology. Journal of Chromatography B: Biomedical Sciences and Applications 677(1), 1 (1996).

    Article  Google Scholar 

  10. 10.

    Bi, S., Song, D., Tian, Y., Zhou, X., Liu, Z., Zhang, H.: Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61 (4), 629 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    Guo, X.J., Jing, K., Guo, C., Jiang, Y.C., Tong, J., Han, X.W.: The investigation of the interaction between oxybutynin hydrochloride and bovine serum albumin by spectroscopic methods. J. Lumin. 130(12), 2281 (2010).

    Article  Google Scholar 

  12. 12.

    Abdollahpour, N., Soheili, V., Saberi, M.R., Chamani, J.: Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. Eur. J. Drug. Metab. Pharmacokinet. 41(6), 705 (2016).

    Article  Google Scholar 

  13. 13.

    Yue, Y., Chen, X., Qin, J., Yao, X.: Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids and Surfaces B: Biointerfaces 69(1), 51 (2009).

    Article  Google Scholar 

  14. 14.

    Roychoudhury, A., Bieker, A., Häussinger, D., Oesterhelt, F.: Membrane protein stability depends on the concentration of compatible solutes–a single molecule force spectroscopic study. Biol. Chem. 394(11), 1465 (2013).

    Article  Google Scholar 

  15. 15.

    Cao, Y., Balamurali, M., Sharma, D., Li, H.: A functional single-molecule binding assay via force spectroscopy. Proc. Natl. Acad. Sci. 104(40), 15677 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    Maruyama, K.: Connectin/titin, giant elastic protein of muscle. The FASEB J 11(5), 341 (1997).

    Article  Google Scholar 

  17. 17.

    Granzier, H., Labeit, D., Wu, Y., Labeit, S.: Titin as a modular spring: emerging mechanisms for elasticity control by titin in cardiac physiology and pathophysiology. Mechanics of Elastic Biomolecules, pp. 457–471. (2003)

  18. 18.

    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 1109 (1997).

    Article  Google Scholar 

  19. 19.

    Carrion-Vazquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, S.E., Clarke, J., Fernandez, J.M.: Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. U.S.A. 96(7), 3694 (1999).

    ADS  Article  Google Scholar 

  20. 20.

    DuVall, M.M., Gifford, J.L., Amrein, M., Herzog, W.: Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium. Eur. Biophys. J. 42(4), 301 (2013).

    Article  Google Scholar 

  21. 21.

    Banerjee, S., Mitra, C.: Muscle relaxant properties of chloramphenicol. J. Pharm. Sci. 65(5), 704 (1976).

    Article  Google Scholar 

  22. 22.

    Sohn, Y.Z., Katz, R.L.: Effects of certain antibiotics on isometric contractions of isolated rat heart muscle. Can. Anaesth. Soc. J. 25(4), 291 (1978).

    Article  Google Scholar 

  23. 23.

    Sohn, Y., Katz, R.L.: Interaction of halothane and antibiotics on isometric contractions on rat-heart muscle. Anesth. Analg. 56(4), 515 (1977).

    Article  Google Scholar 

  24. 24.

    Glanzer, M., Peaslee, M.H.: Inhibition of heart beat development by chloramphenicol in intact andcardia bifida explanted chick embryos. Experientia 26(4), 370 (1970).

    Article  Google Scholar 

  25. 25.

    Ding, F., Zhao, G., Chen, S., Liu, F., Sun, Y., Zhang, L.: Chloramphenicol binding to human serum albumin: determination of binding constants and binding sites by steady-state fluorescence. J. Mol. Struct. 929(1-3), 159 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Panov, V., Shipanova, I., Michtchenko, A., Shabunin, I., Shimanovskii, N., Sibeldina, L., Sergeev, P.: 1h and 13c nmr study of the molecular interaction mechanism between chloramphenicol and human serum albumin. Int. J. Biochem. Mol. Biol. 35(2), 457 (1995)

    Google Scholar 

  27. 27.

    Ding, F., Zhao, G., Huang, J., Sun, Y., Zhang, L.: Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur. J. Med. Chem. 44(10), 4083 (2009).

    Article  Google Scholar 

  28. 28.

    Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: Patchdock and symmdock: servers for rigid and symmetric docking. Nucleic Acids Research 33(Suppl._2), W363 (2005).

    Article  Google Scholar 

  29. 29.

    Fraiji, L.K., Hayes, D.M., Werner, T.: Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. J. Chem. Educ. 69(5), 424 (1992).

    Article  Google Scholar 

  30. 30.

    Lakowicz, J.R., Weber, G.: Quenching of fluorescence by oxygen. probe for structural fluctuations in macromolecules. Biochem. 12(21), 4161 (1973).

    Article  Google Scholar 

  31. 31.

    Ware, W.R.: Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J. Phys. Chem. 66(3), 455 (1962).

    Article  Google Scholar 

  32. 32.

    Pace, C.: Determination and analysis of urea and guanidine hydrochloride denaturation curves. In Methods in Enzymology (Hirs, C.H.W. and Timasheff, S.N., eds.) Vol 131. (1986)

  33. 33.

    Tayyab, S., Siddiqui, M.U., Ahmad, N.: Experimental determination of the free energy of unfolding of proteins. Biochem. Educ. 23(3), 162 (1995).

    Article  Google Scholar 

  34. 34.

    Zhang, J., Chen, L., Zeng, B, Kang, Q, Dai, L: Study on the binding of chloroamphenicol with bovine serum albumin by fluorescence and UVvis spectroscopy. Spectrochimica Acta Part A 105, 74 (2013). 10.1016/j.saa.2012.11.064

    ADS  Article  Google Scholar 

  35. 35.

    Ding, F., Liu, W., Sun, Y., Yang, X.L., Sun, Y., Zhang, L.: Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling. J. Mol. Struct. 1007, 81 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Pramanik, U., Khamari, L., Shekhar, S., Mukherjee, S.: On the role of hydrophobic interactions between chloramphenicol and bovine pancreatic trypsin: The effect of a strong electrolyte. Chem. Phys. Lett. 137137, 742 (2020).

    Article  Google Scholar 

  37. 37.

    Arakawa, T., Timasheff, S.N.: Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224(1), 169 (1983).

    Article  Google Scholar 

  38. 38.

    Arakawa, T., Timasheff, S.: The stabilization of proteins by osmolytes. Biophys. J 47(3), 411 (1985).

    Article  Google Scholar 

  39. 39.

    Roychoudhury, A., Haussinger, D., Oesterhelt, F.: Effect of the compatible solute ectoine on the stability of the membrane proteins. Prot. Pept. Lett. 19(8), 791 (2012).

    Article  Google Scholar 

  40. 40.

    Oberdörfer, Y., Schrot, S., Fuchs, H., Galinski, E., Janshoff, A.: Impact of compatible solutes on the mechanical properties of fibronectin: a single molecule analysis. Phys. Chem. Chem. Phys. 5(9), 1876 (2003).

    Article  Google Scholar 

Download references


The authors wish to thank Dr. Sabyasachi Rakshit (IISER Mohali) for providing I27 monomer plasmid and Professor Sri Rama koti (TIFR Mumbai) for providing plasmid for I27 octamer.


S.P. received the Wellcome Trust - Department of Biotechnology (DBT) India Alliance (Intermediate Fellowship 500172/Z/09/Z). J.Y. is a recipient of Senior Research Fellowship from University Grants Commission, India.

Author information



Corresponding author

Correspondence to Shivprasad Patil.

Ethics declarations

Ethics approval

This study does not contain any animal model/experiment and hence does not require any ethical approval.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: 1. Section -Biological Physics of Nucleic Acids and Proteins

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, J., Kumar, Y., Singaraju, G.S. et al. Interaction of chloramphenicol with titin I27 probed using single-molecule force spectroscopy. J Biol Phys 47, 191–204 (2021).

Download citation


  • Titin I27
  • Chloramphenicol
  • Single molecule force spectroscopy
  • AFM