Skip to main content
Log in

Elastic modulus of Dictyostelium is affected by mechanotransduction

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The stiffness of adherent mammalian cells is regulated by the elasticity of substrates due to mechanotransduction via integrin-based focal adhesions. Dictyostelium discoideum is an ameboid protozoan model organism that does not carry genes for classical integrin and can adhere to substrates without forming focal adhesions. It also has a life cycle that naturally includes both single-cellular and multicellular life forms. In this article, we report the measurements of the elastic modulus of single cells on varied substrate stiffnesses and the elastic modulus of the multicellular “slug” using atomic force microscopy (AFM) as a microindenter/force transducer. The results show that the elastic modulus of the Dictyostelium cell is regulated by the stiffness of the substrate and its surrounding cells, which is similar to the mechanotransduction behavior of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iskratsch, T., Wolfenson, H., Sheetz, M.P.: Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014). https://doi.org/10.1038/nrm3903

    Article  Google Scholar 

  2. Discher, D.E.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005). https://doi.org/10.1126/science.1116995

    Article  ADS  Google Scholar 

  3. Kshitiz, Park, J., Kim, P., Helen, W., Engler, A.J., Levchenko, A., Kim, D.-H.: Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. (Camb) 4, 1008–1018 (2012)

    Article  Google Scholar 

  4. Engler, A.J., Griffin, M.A., Sen, S., Bönnemann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004). https://doi.org/10.1083/jcb.200405004

    Article  Google Scholar 

  5. Moeendarbary, E., Harris, A.R.: Cell mechanics: principles, practices, and prospects: cell mechanics. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 371–388 (2014). https://doi.org/10.1002/wsbm.1275

    Article  Google Scholar 

  6. Solon, J., Levental, I., Sengupta, K., Georges, P.C., Janmey, P.A.: Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461 (2007). https://doi.org/10.1529/biophysj.106.101386

    Article  ADS  Google Scholar 

  7. Byfield, F.J., Reen, R.K., Shentu, T.-P., Levitan, I., Gooch, K.J.: Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42, 1114–1119 (2009). https://doi.org/10.1016/j.jbiomech.2009.02.012

    Article  Google Scholar 

  8. Takai, E., Costa, K.D., Shaheen, A., Hung, C.T., Guo, X.E.: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33, 963–971 (2005). https://doi.org/10.1007/s10439-005-3555-3

    Article  Google Scholar 

  9. Yousafzai, M.S., Ndoye, F., Coceano, G., Niemela, J., Bonin, S., Scoles, G., Cojoc, D.: Substrate-dependent cell elasticity measured by optical tweezers indentation. Opt. Lasers Eng. 76, 27–33 (2016). https://doi.org/10.1016/j.optlaseng.2015.02.008

    Article  Google Scholar 

  10. Wang, N., Tytell, J.D., Ingber, D.E.: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009). https://doi.org/10.1038/nrm2594

    Article  Google Scholar 

  11. Loomis, W.F., Fuller, D., Gutierrez, E., Groisman, A., Rappel, W.-J.: Innate non-specific cell substratum adhesion. PLoS One 7, e42033 (2012). https://doi.org/10.1371/journal.pone.0042033

    Article  ADS  Google Scholar 

  12. Cornillon, S., Gebbie, L., Benghezal, M., Nair, P., Keller, S., Wehrle-Haller, B., Charette, S.J., Brückert, F., Letourneur, F., Cosson, P.: An adhesion molecule in free-living Dictyostelium amoebae with integrin β features. EMBO Rep. (2006). https://doi.org/10.1038/sj.embor.7400701

  13. Cornillon, S., Froquet, R., Cosson, P.: Involvement of Sib proteins in the regulation of cellular adhesion in Dictyostelium discoideum. Eukaryot. Cell 7, 1600–1605 (2008). https://doi.org/10.1128/EC.00155-08

    Article  Google Scholar 

  14. Luo, T., Mohan, K., Iglesias, P.A., Robinson, D.N.: Molecular mechanisms of cellular mechanosensing. Nat. Mater. 12, 1064–1071 (2013). https://doi.org/10.1038/nmat3772

    Article  ADS  Google Scholar 

  15. Orr, A.W., Helmke, B.P., Blackman, B.R., Schwartz, M.A.: Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006). https://doi.org/10.1016/j.devcel.2005.12.006

    Article  Google Scholar 

  16. Chen, G., Zhuchenko, O., Kuspa, A.: Immune-like phagocyte activity in the social amoeba. Science 317, 678–681 (2007). https://doi.org/10.1126/science.1143991

    Article  ADS  Google Scholar 

  17. Oyen, M.L.: Nanoindentation of biological and biomimetic materials. Exp. Tech. 37, 73–87 (2013). https://doi.org/10.1111/j.1747-1567.2011.00716.x

    Article  Google Scholar 

  18. Ding, Y., Xu, G.-K., Wang, G.-F.: On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 7, (2017). https://doi.org/10.1038/srep45575

  19. Haupt, B.J., Osbourn, M., Spanhoff, R., de Keijzer, S., Müller-Taubenberger, A., Snaar-Jagalska, E., Schmidt, T.: Asymmetric elastic properties of Dictyostelium discoideum in relation to chemotaxis. Langmuir 23, 9352–9357 (2007). https://doi.org/10.1021/la700693f

    Article  Google Scholar 

  20. Butt, H.-J., Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005). https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  ADS  Google Scholar 

  21. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993). https://doi.org/10.1063/1.1143970

    Article  ADS  Google Scholar 

  22. Mahaffy, R.E., Shih, C.K., MacKintosh, F.C., Käs, J.: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880–883 (2000). https://doi.org/10.1103/PhysRevLett.85.880

    Article  ADS  Google Scholar 

  23. Jacobs, T.D.B., Mathew Mate, C., Carpick, R.W.: Understanding the tip–sample contact: an overview of contact mechanics from the macro- to the nanoscale. In: Yablon, D.G. (ed.) Scanning Probe Microscopy in Industrial Applications, pp. 15–48. Wiley, Hoboken (2013)

    Chapter  Google Scholar 

  24. Saha, R., Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38 (2002). https://doi.org/10.1016/S1359-6454(01)00328-7

    Article  Google Scholar 

  25. Selby, A., Maldonado-Codina, C., Derby, B.: Influence of specimen thickness on the nanoindentation of hydrogels: measuring the mechanical properties of soft contact lenses. J. Mech. Behav. Biomed. Mater. 35, 144–156 (2014). https://doi.org/10.1016/j.jmbbm.2013.11.023

    Article  Google Scholar 

  26. Kirmizis, D., Logothetidis, S.: Atomic force microscopy probing in the measurement of cell mechanics. Int. J. Nanomedicine 5, 137–145 (2010)

    Article  Google Scholar 

  27. Normand, V., Lootens, D.L., Amici, E., Plucknett, K.P., Aymard, P.: New insight into agarose gel mechanical properties. Biomacromolecules. 1, 730–738 (2000). https://doi.org/10.1021/bm005583j

    Article  Google Scholar 

  28. Stolz, M., Raiteri, R., Daniels, A.U., VanLandingham, M.R., Baschong, W., Aebi, U.: Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 86, 3269–3283 (2004). https://doi.org/10.1016/S0006-3495(04)74375-1

    Article  ADS  Google Scholar 

  29. Ketene, A.N., Roberts, P.C., Shea, A.A., Schmelz, E.M., Agah, M.: Actin filaments play a primary role for structural integrity and viscoelastic response in cells. Integr. Biol. 4, 540 (2012). https://doi.org/10.1039/c2ib00168c

    Article  Google Scholar 

  30. Discher, D.E., Smith, L., Cho, S., Colasurdo, M., García, A.J., Safran, S.: Matrix mechanosensing: from scaling concepts in ’omics data to mechanisms in the nucleus, regeneration, and cancer. Annu. Rev. Biophys. 46, 295–315 (2017). https://doi.org/10.1146/annurev-biophys-062215-011206

    Article  Google Scholar 

  31. Coates, J.C., Harwood, A.J.: Cell-cell adhesion and signal transduction during Dictyostelium development. J. Cell Sci. 114, 4349–4358 (2001)

    Google Scholar 

  32. Farnsworth, P.A., Loomis, W.F.: A gradient in the thickness of the surface sheath in pseudoplasmodia of Dictyostelium discoideum. Dev. Biol. 46, 349–357 (1975). https://doi.org/10.1016/0012-1606(75)90111-6

    Article  Google Scholar 

  33. Tasaka, M., Takeuchi, I.: Cell patterning during slug migration and early culmination in Dictyostelium discoideum. Differentiation. 23, 184–188 (1982). https://doi.org/10.1111/j.1432-0436.1982.tb01282.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Loras College (sabbatical awarded to K.M.C.) and the Iowa Science Foundation for this project (ISF 16-07 to K.M.C.). We thank Dr. Lee Farina in the Engineering Physics Department at University of Wisconsin-Platteville for her design of the microscope adaptor and her assistance in AFM experiments. The AFM experiments were carried out in the Material Fabrication and Nanoscale Characterization Lab under the support of the College of Engineering, Mathematics, and Science at University of Wisconsin-Platteville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate M. Cooper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Cooper, K.M. Elastic modulus of Dictyostelium is affected by mechanotransduction. J Biol Phys 45, 293–305 (2019). https://doi.org/10.1007/s10867-019-09529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-019-09529-1

Keywords

Navigation