Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin


The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Jarrett, J.T., Berger, E.P., Lansbury, P.T.: The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697 (1993)

    Article  Google Scholar 

  2. 2.

    El-Agnaf, O.M.A., Mahil, D.S., Patel, B.P., Austen, B.M.: Oligomerization and toxicity of β-amyloid-42 implicated in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 273, 1003–1007 (2000)

    Article  Google Scholar 

  3. 3.

    Selkoe, D.J.: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001)

    Article  Google Scholar 

  4. 4.

    Hilbich, C., Kisterswoike, B., Reed, J., Masters, C.L., Beyreuther, K.: Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J. Mol. Biol. 228, 460–473 (1992)

    Article  Google Scholar 

  5. 5.

    Soto, C., Castaño, E.M., Kumar, R.A., Beavis, R.C., Frangione, B.: Fibrillogenesis of synthetic amyloid-β peptides is dependent on their initial secondary structure. Neurosci. Lett. 200, 105–108 (1995)

    Article  Google Scholar 

  6. 6.

    Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C.: Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548 (1996)

    Article  Google Scholar 

  7. 7.

    Everett, J., Cespedes, E., Shelford, L.R., Exley, C., Collingwood, J.F., Dobson, J., van der Laan, G., Jenkins, C.A., Arenholz, E., Telling, N.D.: Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer’s disease peptide β-amyloid. Inorg. Chem. 53, 2803–2809 (2014)

  8. 8.

    Scarpini, E., Scheltens, P., Feldman, H.: Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol. 2, 539–547 (2003)

    Article  Google Scholar 

  9. 9.

    Pankhurst, Q., Hautot, D., Khan, N., Dobson, J.: Increased levels of magnetic iron compounds in Alzheimer's disease. J. Alzheimers Dis. 13, 49–52 (2008)

    Article  Google Scholar 

  10. 10.

    Brillas, E., Sirés, I., Oturan, M.A.: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009)

    Article  Google Scholar 

  11. 11.

    Crichton, R.R., Dexter, D.T., Ward, R.J.: Brain iron metabolism and its perturbation in neurological diseases. J. Neural Transm. 118, 301–314 (2011)

    Article  Google Scholar 

  12. 12.

    Zecca, L., Youdim, M.B.H., Riederer, P., Connor, J.R., Crichton, R.R.: Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863–873 (2004)

    Article  Google Scholar 

  13. 13.

    Everett, J., Cespedes, E., Shelford, L.R., Exley, C., Collingwood, J.F., Dobson, J., van der Laan, G., Jenkins, C.A., Arenholz, E., Telling, N.D.: Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide β-amyloid (1-42). J. Royal Soc. Interface 11, 20140165 (2014)

  14. 14.

    Riemer, J., Hoepken, H.H., Czerwinska, H., Robinson, S.R., Dringen, R.: Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 331, 370–375 (2004)

    Article  Google Scholar 

  15. 15.

    Khan, A., Dobson, J.P., Exley, C.: Redox cycling of iron by Aβ42. Free Radic. Biol. Med. 40, 557–569 (2006)

    Article  Google Scholar 

  16. 16.

    Jutz, G., van Rijn, P., Santos Miranda, B., Böker, A.: Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015)

    Article  Google Scholar 

  17. 17.

    Watt, R.K., Hilton, R.J., Graff, D.M.: Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell. Biochim. Biophys. Acta Gen. Subj. 1800, 745–759 (2010)

    Article  Google Scholar 

  18. 18.

    Carmona, F., Palacios, O., Galvez, N., Cuesta, R., Atrian, S., Capdevila, M., Dominguez-Vera, J.M.: Ferritin iron uptake and release in the presence of metals and metalloproteins: chemical implications in the brain. Coor. Chem. Rev. 257, 2752–2764 (2013)

    Article  Google Scholar 

  19. 19.

    Philpott, C.C., Ryu, M.-S.: Special delivery: distributing iron in the cytosol of mammalian cells. Front. Pharmacol. 5, 173 (2014)

    Article  Google Scholar 

  20. 20.

    Tahirbegi, I.B., Pardo, W.A., Alvira, M., Mir, M., Samitier, J.: Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer’s disease. Nanotechnology 27, 465102 (2016)

  21. 21.

    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  22. 22.

    Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R., Singh, S.: Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151, 229–238 (2005)

    Article  Google Scholar 

  23. 23.

    Vassar, P.S., Culling, C.F.: Fluorescent stains, with special reference to amyloid and connective tissues. Arch. Pathol. 68, 487–498 (1959)

    Google Scholar 

  24. 24.

    LeVine III, H.: Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993)

  25. 25.

    Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., Bush, A.I.: The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999)

Download references


This work was supported by VEGA Grant Agency (project No. 2/0062/16, 2/0016/17, 0045, 2/0062/14, 2/0009/17), the Slovak Research and Development Agency (contract No. APVV-015-0453) and the Ministry of Education Agency for European Structural Funds (projects No. 26220120021, 2622012033, 26220220061, and 26220220186).

Author information



Corresponding author

Correspondence to Ivo Safarik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balejcikova, L., Siposova, K., Kopcansky, P. et al. Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin. J Biol Phys 44, 237–243 (2018). https://doi.org/10.1007/s10867-018-9498-3

Download citation


  • Ferritin
  • Aβ
  • Iron reduction
  • Alzheimer’s disease
  • Magnetite
  • Metallochaperone