Journal of Biological Physics

, Volume 44, Issue 3, pp 237–243 | Cite as

Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin

  • Lucia Balejcikova
  • Katarina Siposova
  • Peter Kopcansky
  • Ivo SafarikEmail author
Brief Communication


The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.


Ferritin Aβ Iron reduction Alzheimer’s disease Magnetite Metallochaperone 



This work was supported by VEGA Grant Agency (project No. 2/0062/16, 2/0016/17, 0045, 2/0062/14, 2/0009/17), the Slovak Research and Development Agency (contract No. APVV-015-0453) and the Ministry of Education Agency for European Structural Funds (projects No. 26220120021, 2622012033, 26220220061, and 26220220186).


  1. 1.
    Jarrett, J.T., Berger, E.P., Lansbury, P.T.: The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 4693–4697 (1993)CrossRefGoogle Scholar
  2. 2.
    El-Agnaf, O.M.A., Mahil, D.S., Patel, B.P., Austen, B.M.: Oligomerization and toxicity of β-amyloid-42 implicated in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 273, 1003–1007 (2000)CrossRefGoogle Scholar
  3. 3.
    Selkoe, D.J.: Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001)CrossRefGoogle Scholar
  4. 4.
    Hilbich, C., Kisterswoike, B., Reed, J., Masters, C.L., Beyreuther, K.: Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J. Mol. Biol. 228, 460–473 (1992)CrossRefGoogle Scholar
  5. 5.
    Soto, C., Castaño, E.M., Kumar, R.A., Beavis, R.C., Frangione, B.: Fibrillogenesis of synthetic amyloid-β peptides is dependent on their initial secondary structure. Neurosci. Lett. 200, 105–108 (1995)CrossRefGoogle Scholar
  6. 6.
    Tjernberg, L.O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C.: Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548 (1996)CrossRefGoogle Scholar
  7. 7.
    Everett, J., Cespedes, E., Shelford, L.R., Exley, C., Collingwood, J.F., Dobson, J., van der Laan, G., Jenkins, C.A., Arenholz, E., Telling, N.D.: Evidence of redox-active iron formation following aggregation of ferrihydrite and the Alzheimer’s disease peptide β-amyloid. Inorg. Chem. 53, 2803–2809 (2014)Google Scholar
  8. 8.
    Scarpini, E., Scheltens, P., Feldman, H.: Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol. 2, 539–547 (2003)CrossRefGoogle Scholar
  9. 9.
    Pankhurst, Q., Hautot, D., Khan, N., Dobson, J.: Increased levels of magnetic iron compounds in Alzheimer's disease. J. Alzheimers Dis. 13, 49–52 (2008)CrossRefGoogle Scholar
  10. 10.
    Brillas, E., Sirés, I., Oturan, M.A.: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009)CrossRefGoogle Scholar
  11. 11.
    Crichton, R.R., Dexter, D.T., Ward, R.J.: Brain iron metabolism and its perturbation in neurological diseases. J. Neural Transm. 118, 301–314 (2011)CrossRefGoogle Scholar
  12. 12.
    Zecca, L., Youdim, M.B.H., Riederer, P., Connor, J.R., Crichton, R.R.: Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863–873 (2004)CrossRefGoogle Scholar
  13. 13.
    Everett, J., Cespedes, E., Shelford, L.R., Exley, C., Collingwood, J.F., Dobson, J., van der Laan, G., Jenkins, C.A., Arenholz, E., Telling, N.D.: Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide β-amyloid (1-42). J. Royal Soc. Interface 11, 20140165 (2014)Google Scholar
  14. 14.
    Riemer, J., Hoepken, H.H., Czerwinska, H., Robinson, S.R., Dringen, R.: Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal. Biochem. 331, 370–375 (2004)CrossRefGoogle Scholar
  15. 15.
    Khan, A., Dobson, J.P., Exley, C.: Redox cycling of iron by Aβ42. Free Radic. Biol. Med. 40, 557–569 (2006)CrossRefGoogle Scholar
  16. 16.
    Jutz, G., van Rijn, P., Santos Miranda, B., Böker, A.: Ferritin: a versatile building block for bionanotechnology. Chem. Rev. 115, 1653–1701 (2015)CrossRefGoogle Scholar
  17. 17.
    Watt, R.K., Hilton, R.J., Graff, D.M.: Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell. Biochim. Biophys. Acta Gen. Subj. 1800, 745–759 (2010)CrossRefGoogle Scholar
  18. 18.
    Carmona, F., Palacios, O., Galvez, N., Cuesta, R., Atrian, S., Capdevila, M., Dominguez-Vera, J.M.: Ferritin iron uptake and release in the presence of metals and metalloproteins: chemical implications in the brain. Coor. Chem. Rev. 257, 2752–2764 (2013)CrossRefGoogle Scholar
  19. 19.
    Philpott, C.C., Ryu, M.-S.: Special delivery: distributing iron in the cytosol of mammalian cells. Front. Pharmacol. 5, 173 (2014)CrossRefGoogle Scholar
  20. 20.
    Tahirbegi, I.B., Pardo, W.A., Alvira, M., Mir, M., Samitier, J.: Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer’s disease. Nanotechnology 27, 465102 (2016)Google Scholar
  21. 21.
    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRefGoogle Scholar
  22. 22.
    Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R., Singh, S.: Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151, 229–238 (2005)CrossRefGoogle Scholar
  23. 23.
    Vassar, P.S., Culling, C.F.: Fluorescent stains, with special reference to amyloid and connective tissues. Arch. Pathol. 68, 487–498 (1959)Google Scholar
  24. 24.
    LeVine III, H.: Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993)Google Scholar
  25. 25.
    Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E., Bush, A.I.: The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 7609–7616 (1999)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lucia Balejcikova
    • 1
  • Katarina Siposova
    • 1
  • Peter Kopcansky
    • 1
  • Ivo Safarik
    • 2
    • 3
    Email author
  1. 1.Institute of Experimental PhysicsSASKosiceSlovakia
  2. 2.Department of NanobiotechnologyBiology Centre, ISB, CASCeske BudejoviceCzech Republic
  3. 3.Regional Centre of Advanced Technologies and MaterialsPalacky UniversityOlomoucCzech Republic

Personalised recommendations