Skip to main content
Log in

Direct visualization of single virus restoration after damage in real time

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Flint, S.J., Enquist, L.W., Racaniello, V.R., Skalka, A.M.: Principles of Virology. ASM Press, Washington DC (2004)

    Google Scholar 

  2. Cordova, A., Deserno, M., Gelbart, W.M., Ben-Shaul, A.: Osmotic shock and the strength of viral capsids. Biophys. J. 85(1), 70–74 (2003)

    Article  Google Scholar 

  3. Carrasco, C., Douas, M., Miranda, R., Castellanos, M., Serena, P.A., Carrascosa, J.L., Mateu, M.G., Marques, M.I., de Pablo, P.J.: The capillarity of nanometric water menisci confined inside closed-geometry viral cages. Proc. Natl. Acad. Sci. U. S. A. 106(14), 5475–5480 (2009). https://doi.org/10.1073/pnas.0810095106

    Article  ADS  Google Scholar 

  4. Lucon, J., Qazi, S., Uchida, M., Bedwell, G.J., LaFrance, B., Prevelige Jr., P.E., Douglas, T.: Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat. Chem. 4(10), 781–788 (2012). https://doi.org/10.1038/nchem.1442

    Article  Google Scholar 

  5. Uchida, M., McCoy, K., Fukuto, M., Yang, L., Yoshimura, H., Miettinen, H.M., LaFrance, B., Patterson, D.P., Schwarz, B., Karty, J.A., Prevelige, P.E., Lee, B., Douglas, T.: Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano (2017). https://doi.org/10.1021/acsnano.7b06049

  6. de Pablo PJ, Schaap IAT, MacKintosh FC, Schmidt CF (2003) Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91(9), 098101 (2003). https://doi.org/10.1103/PhysRevLett.91.098101

  7. Snijder, J., Kononova, O., Barbu, I.M., Uetrecht, C., Rurup, W.F., Burnley, R.J., Koay, M.S., Cornelissen, J.J., Roos, W.H., Barsegov, V., Wuite, G.J., Heck, A.J.: Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial Nanocompartment Encapsulin. Biomacromolecules 17(8), 2522–2529 (2016). https://doi.org/10.1021/acs.biomac.6b00469

    Article  Google Scholar 

  8. Llauro, A., Guerra, P., Kant, R., Bothner, B., Verdaguer, N., de Pablo, P.J.: Decrease in pH destabilizes individual vault nanocages by weakening the inter-protein lateral interaction. Sci. Rep. 6, 34143 (2016). https://doi.org/10.1038/srep34143

    Article  ADS  Google Scholar 

  9. Zlotnick, A.: Are weak protein-protein interactions the general rule in capsid assembly? Virology 315(2), 269–274 (2003). https://doi.org/10.1016/S0042-6822(03)00586-5

    Article  Google Scholar 

  10. Hernando-Perez, M., Pascual, E., Aznar, M., Ionel, A., Caston, J.R., Luque, A., Carrascosa, J.L., Reguera, D., de Pablo, P.J.: The interplay between mechanics and stability of viral cages. Nano 6(5), 2702–2709 (2014). https://doi.org/10.1039/C3NR05763A

    ADS  Google Scholar 

  11. Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63(4), 862–922 (1999)

    Google Scholar 

  12. Moreno-Madrid, F., Martin-Gonzalez, N., Llauro, A., Ortega-Esteban, A., Hernando-Perez, M., Douglas, T., Schaap, I.A., de Pablo, P.J.: Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45(2), 499–511 (2017). https://doi.org/10.1042/BST20160316

    Article  Google Scholar 

  13. Schaap, I.A.T., Carrasco, C., de Pablo, P.J., MacKintosh, F.C., Schmidt, C.F.: Elastic response, buckling, and instability of microtubules under radial indentation. Biophys. J. 91(4), 1521–1531 (2006). https://doi.org/10.1529/biophysj.105.077826

    Article  ADS  Google Scholar 

  14. de Pablo, P.J.: Atomic force microscopy of virus shells. Semin. Cell Dev. Biol. (2017). https://doi.org/10.1016/j.semcdb.2017.08.039

  15. Ortega-Esteban, A., Horcas, I., Hernando-Perez, M., Ares, P., Perez-Berna, A.J., San Martin, C., Carrascosa, J.L., de Pablo, P.J., Gomez-Herrero, J.: Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114, 56–61 (2012). https://doi.org/10.1016/j.ultramic.2012.01.007

    Article  Google Scholar 

  16. Ortega-Esteban, A., Perez-Berna, A.J., Menendez-Conejero, R., Flint, S.J., Martin, C.S., de Pablo, P.J.: Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep. 3 (2013). https://doi.org/10.1038/srep01434

  17. Hernando-Pérez, M., Lambert, S., Nakatani-Webster, E., Catalano, C.E., de Pablo, P.J.: Cementing proteins provide extra mechanical stabilization to viral cages. Nat. Commun. 5, 4520 (2014). https://doi.org/10.1038/ncomms5520

    Article  Google Scholar 

  18. Mertens, J., Casado, S., Mata, C.P., Hernando-Perez, M., de Pablo, P.J., Carrascosa, J.L., Caston, J.R.: A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci. Rep. 5, 13486 (2015). https://doi.org/10.1038/srep13486

    Article  ADS  Google Scholar 

  19. Garcia, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47(6-8), 197–301 (2002)

    Article  ADS  Google Scholar 

  20. Agirrezabala, X., Martin-Benito, J., Caston, J.R., Miranda, R., Valpuesta, M., Carrascosa, J.L.: Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J. 24(21), 3820–3829 (2005). https://doi.org/10.1038/sj.emboj.7600840

    Article  Google Scholar 

  21. García, L.R., Molineux, I.J.: Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli. J. Bacteriol. 178(23), 6921–6929 (1996). https://doi.org/10.1128/jb.178.23.6921-6929.1996

    Article  Google Scholar 

  22. Cuervo, A., Pulido-Cid, M., Chagoyen, M., Arranz, R., González-García, V.A., Garcia-Doval, C., Castón, J.R., Valpuesta, J.M., van Raaij, M.J., Martín-Benito, J., Carrascosa, J.L.: Structural characterization of the bacteriophage T7 tail machinery. J. Biol. Chem. 288(36), 26290–26299 (2013). https://doi.org/10.1074/jbc.M113.491209

    Article  Google Scholar 

  23. Carrascosa, J.L., Agirrezabala, X., Velazquez-Muriel, J.A., Gomez-Puertas, P., Scheres, S.H.W., Carazo, J.M.: Quasi-atomic model of bacteriophage T7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15(4), 461–472 (2007). https://doi.org/10.1016/j.str.2007.03.004

    Article  Google Scholar 

  24. Monera, O.D., Kay, C.M., Hodges, R.S.: Protein denaturation with guanidine-hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 3(11), 1984–1991 (1994)

    Article  Google Scholar 

  25. Aznar, M., Luque, A., Reguera, D.: Relevance of capsid structure in the buckling and maturation of spherical viruses. Phys. Bio. 9(3), 036003 (2012). https://doi.org/10.1088/1478-3975/9/3/036003

    Article  Google Scholar 

  26. Voros, Z., Csik, G., Herenyi, L., Kellermayer, M.S.Z.: Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale 9(3), 1136–1143 (2017). https://doi.org/10.1039/C6NR06598H

    Article  Google Scholar 

  27. Putman, C.A.J., Vanderwerf, K.O., Degrooth, B.G., Vanhulst, N.F., Greve, J.: Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64(18), 2454–2456 (1994)

    Article  ADS  Google Scholar 

  28. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004). https://doi.org/10.1002/jcc.20084

    Article  Google Scholar 

  29. Ionel, A., Velazquez-Muriel, J.A., Luque, D., Cuervo, A., Caston, J.R., Valpuesta, J.M., Martin-Benito, J., Carrascosa, J.L.: Molecular rearrangements involved in the capsid Shell maturation of bacteriophage. J. Biol. Chem. 286(1), 234–242 (2011). https://doi.org/10.1074/jbc.M110.187211

    Article  Google Scholar 

  30. Vliegenthart, G.A., Gompper, G.: Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys. J. 91(3), 834–841 (2006). https://doi.org/10.1529/biophysj.106.081422

    Article  ADS  Google Scholar 

  31. Klug, W.S., Bruinsma, R.F., Michel, J.P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97(22), 228101 (2006)

    Article  ADS  Google Scholar 

  32. Ivanovska, I.L., Miranda, R., Carrascosa, J.L., Wuite, G.J.L., Schmidt, C.F.: Discrete fracture patterns of virus shells reveal mechanical building blocks. Proc. Natl. Acad. Sci. U. S. A. 108(31), 12611–12616 (2011). https://doi.org/10.1073/pnas.1105586108

    Article  ADS  Google Scholar 

  33. Snijder, J., Uetrecht, C., Rose, R.J., Sanchez-Eugenia, R., Marti, G.A., Agirre, J., Guerin, D.M., Wuite, G.J., Heck, A.J., Roos, W.H.: Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5(6), 502–509 (2013). https://doi.org/10.1038/nchem.1627

    Article  Google Scholar 

  34. Ortega-Esteban, A., Condezo, G.N., Perez-Berna, A.J., Chillon, M., Flint, S.J., Reguera, D., San Martin, C., de Pablo, P.J.: Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9(11), 10826–10833 (2015). https://doi.org/10.1021/acsnano.5b03417

    Article  Google Scholar 

  35. Llauro, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10(9), 8465–8473 (2016). https://doi.org/10.1021/acsnano.6b03441

    Article  Google Scholar 

  36. Llauro, A., Guerra, P., Irigoyen, N., Rodriguez, J.F., Verdaguer, N., de Pablo, P.J.: Mechanical stability and reversible fracture of vault particles. Biophys. J. 106(3), 687–695 (2014). https://doi.org/10.1016/j.bpj.2013.12.035

    Article  ADS  Google Scholar 

  37. Valbuena, A., Mateu, M.G.: Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating. Nano 7(36), 14953–14964 (2015). https://doi.org/10.1039/c5nr04023j

    ADS  Google Scholar 

Download references

Acknowledgements

PJP thanks FIS2014-59562-R, FIS2017-89549-R, FIS2015-71108-REDT from Fundación BBVA and “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377). JLC and CC acknowledge “Severo Ochoa” Centres of Excellence and JLC to BFU2014-54181.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro J. de Pablo or José L. Carrascosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(AVI 15141 kb)

ESM 2

(AVI 2263 kb)

ESM 3

(AVI 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Pablo, P.J., Hernando-Pérez, M., Carrasco, C. et al. Direct visualization of single virus restoration after damage in real time. J Biol Phys 44, 225–235 (2018). https://doi.org/10.1007/s10867-018-9492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9492-9

Keywords

Navigation