Advertisement

Journal of Biological Physics

, Volume 44, Issue 2, pp 225–235 | Cite as

Direct visualization of single virus restoration after damage in real time

  • Pedro J. de Pablo
  • Mercedes Hernando-Pérez
  • Carolina Carrasco
  • José L. Carrascosa
Original Paper

Abstract

We use the nano-dissection capabilities of atomic force microscopy to induce structural alterations on individual virus capsids in liquid milieu. We fracture the protein shells either with single nanoindentations or by increasing the tip-sample interaction force in amplitude modulation dynamic mode. The normal behavior is that these cracks persist in time. However, in very rare occasions they self-recuperate to retrieve apparently unaltered virus particles. In this work, we show the topographical evolution of three of these exceptional events occurring in T7 bacteriophage capsids. Our data show that single nanoindentation produces a local recoverable fracture that corresponds to the deepening of a capsomer. In contrast, imaging in dynamic mode induced cracks that separate the virus morphological subunits. In both cases, the breakage patterns follow intratrimeric loci.

Keywords

Capsid AFM Mechanics Fracture Failure Nanoindentation Crack Breakage 

Notes

Acknowledgements

PJP thanks FIS2014-59562-R, FIS2017-89549-R, FIS2015-71108-REDT from Fundación BBVA and “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377). JLC and CC acknowledge “Severo Ochoa” Centres of Excellence and JLC to BFU2014-54181.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10867_2018_9492_MOESM1_ESM.avi (14.8 mb)
ESM 1 (AVI 15141 kb)
10867_2018_9492_MOESM2_ESM.avi (2.2 mb)
ESM 2 (AVI 2263 kb)
10867_2018_9492_MOESM3_ESM.avi (1.2 mb)
ESM 3 (AVI 1242 kb)

References

  1. 1.
    Flint, S.J., Enquist, L.W., Racaniello, V.R., Skalka, A.M.: Principles of Virology. ASM Press, Washington DC (2004)Google Scholar
  2. 2.
    Cordova, A., Deserno, M., Gelbart, W.M., Ben-Shaul, A.: Osmotic shock and the strength of viral capsids. Biophys. J. 85(1), 70–74 (2003)CrossRefGoogle Scholar
  3. 3.
    Carrasco, C., Douas, M., Miranda, R., Castellanos, M., Serena, P.A., Carrascosa, J.L., Mateu, M.G., Marques, M.I., de Pablo, P.J.: The capillarity of nanometric water menisci confined inside closed-geometry viral cages. Proc. Natl. Acad. Sci. U. S. A. 106(14), 5475–5480 (2009).  https://doi.org/10.1073/pnas.0810095106 ADSCrossRefGoogle Scholar
  4. 4.
    Lucon, J., Qazi, S., Uchida, M., Bedwell, G.J., LaFrance, B., Prevelige Jr., P.E., Douglas, T.: Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat. Chem. 4(10), 781–788 (2012).  https://doi.org/10.1038/nchem.1442 CrossRefGoogle Scholar
  5. 5.
    Uchida, M., McCoy, K., Fukuto, M., Yang, L., Yoshimura, H., Miettinen, H.M., LaFrance, B., Patterson, D.P., Schwarz, B., Karty, J.A., Prevelige, P.E., Lee, B., Douglas, T.: Modular self-assembly of protein cage lattices for multistep catalysis. ACS Nano (2017).  https://doi.org/10.1021/acsnano.7b06049
  6. 6.
    de Pablo PJ, Schaap IAT, MacKintosh FC, Schmidt CF (2003) Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91(9), 098101 (2003).  https://doi.org/10.1103/PhysRevLett.91.098101
  7. 7.
    Snijder, J., Kononova, O., Barbu, I.M., Uetrecht, C., Rurup, W.F., Burnley, R.J., Koay, M.S., Cornelissen, J.J., Roos, W.H., Barsegov, V., Wuite, G.J., Heck, A.J.: Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial Nanocompartment Encapsulin. Biomacromolecules 17(8), 2522–2529 (2016).  https://doi.org/10.1021/acs.biomac.6b00469 CrossRefGoogle Scholar
  8. 8.
    Llauro, A., Guerra, P., Kant, R., Bothner, B., Verdaguer, N., de Pablo, P.J.: Decrease in pH destabilizes individual vault nanocages by weakening the inter-protein lateral interaction. Sci. Rep. 6, 34143 (2016).  https://doi.org/10.1038/srep34143 ADSCrossRefGoogle Scholar
  9. 9.
    Zlotnick, A.: Are weak protein-protein interactions the general rule in capsid assembly? Virology 315(2), 269–274 (2003).  https://doi.org/10.1016/S0042-6822(03)00586-5 CrossRefGoogle Scholar
  10. 10.
    Hernando-Perez, M., Pascual, E., Aznar, M., Ionel, A., Caston, J.R., Luque, A., Carrascosa, J.L., Reguera, D., de Pablo, P.J.: The interplay between mechanics and stability of viral cages. Nano 6(5), 2702–2709 (2014).  https://doi.org/10.1039/C3NR05763A ADSGoogle Scholar
  11. 11.
    Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63(4), 862–922 (1999)Google Scholar
  12. 12.
    Moreno-Madrid, F., Martin-Gonzalez, N., Llauro, A., Ortega-Esteban, A., Hernando-Perez, M., Douglas, T., Schaap, I.A., de Pablo, P.J.: Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45(2), 499–511 (2017).  https://doi.org/10.1042/BST20160316 CrossRefGoogle Scholar
  13. 13.
    Schaap, I.A.T., Carrasco, C., de Pablo, P.J., MacKintosh, F.C., Schmidt, C.F.: Elastic response, buckling, and instability of microtubules under radial indentation. Biophys. J. 91(4), 1521–1531 (2006).  https://doi.org/10.1529/biophysj.105.077826 ADSCrossRefGoogle Scholar
  14. 14.
    de Pablo, P.J.: Atomic force microscopy of virus shells. Semin. Cell Dev. Biol. (2017).  https://doi.org/10.1016/j.semcdb.2017.08.039
  15. 15.
    Ortega-Esteban, A., Horcas, I., Hernando-Perez, M., Ares, P., Perez-Berna, A.J., San Martin, C., Carrascosa, J.L., de Pablo, P.J., Gomez-Herrero, J.: Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid. Ultramicroscopy 114, 56–61 (2012).  https://doi.org/10.1016/j.ultramic.2012.01.007 CrossRefGoogle Scholar
  16. 16.
    Ortega-Esteban, A., Perez-Berna, A.J., Menendez-Conejero, R., Flint, S.J., Martin, C.S., de Pablo, P.J.: Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep. 3 (2013).  https://doi.org/10.1038/srep01434
  17. 17.
    Hernando-Pérez, M., Lambert, S., Nakatani-Webster, E., Catalano, C.E., de Pablo, P.J.: Cementing proteins provide extra mechanical stabilization to viral cages. Nat. Commun. 5, 4520 (2014).  https://doi.org/10.1038/ncomms5520 CrossRefGoogle Scholar
  18. 18.
    Mertens, J., Casado, S., Mata, C.P., Hernando-Perez, M., de Pablo, P.J., Carrascosa, J.L., Caston, J.R.: A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci. Rep. 5, 13486 (2015).  https://doi.org/10.1038/srep13486 ADSCrossRefGoogle Scholar
  19. 19.
    Garcia, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47(6-8), 197–301 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Agirrezabala, X., Martin-Benito, J., Caston, J.R., Miranda, R., Valpuesta, M., Carrascosa, J.L.: Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J. 24(21), 3820–3829 (2005).  https://doi.org/10.1038/sj.emboj.7600840 CrossRefGoogle Scholar
  21. 21.
    García, L.R., Molineux, I.J.: Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli. J. Bacteriol. 178(23), 6921–6929 (1996).  https://doi.org/10.1128/jb.178.23.6921-6929.1996 CrossRefGoogle Scholar
  22. 22.
    Cuervo, A., Pulido-Cid, M., Chagoyen, M., Arranz, R., González-García, V.A., Garcia-Doval, C., Castón, J.R., Valpuesta, J.M., van Raaij, M.J., Martín-Benito, J., Carrascosa, J.L.: Structural characterization of the bacteriophage T7 tail machinery. J. Biol. Chem. 288(36), 26290–26299 (2013).  https://doi.org/10.1074/jbc.M113.491209 CrossRefGoogle Scholar
  23. 23.
    Carrascosa, J.L., Agirrezabala, X., Velazquez-Muriel, J.A., Gomez-Puertas, P., Scheres, S.H.W., Carazo, J.M.: Quasi-atomic model of bacteriophage T7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15(4), 461–472 (2007).  https://doi.org/10.1016/j.str.2007.03.004 CrossRefGoogle Scholar
  24. 24.
    Monera, O.D., Kay, C.M., Hodges, R.S.: Protein denaturation with guanidine-hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 3(11), 1984–1991 (1994)CrossRefGoogle Scholar
  25. 25.
    Aznar, M., Luque, A., Reguera, D.: Relevance of capsid structure in the buckling and maturation of spherical viruses. Phys. Bio. 9(3), 036003 (2012).  https://doi.org/10.1088/1478-3975/9/3/036003 CrossRefGoogle Scholar
  26. 26.
    Voros, Z., Csik, G., Herenyi, L., Kellermayer, M.S.Z.: Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale 9(3), 1136–1143 (2017).  https://doi.org/10.1039/C6NR06598H CrossRefGoogle Scholar
  27. 27.
    Putman, C.A.J., Vanderwerf, K.O., Degrooth, B.G., Vanhulst, N.F., Greve, J.: Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64(18), 2454–2456 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  29. 29.
    Ionel, A., Velazquez-Muriel, J.A., Luque, D., Cuervo, A., Caston, J.R., Valpuesta, J.M., Martin-Benito, J., Carrascosa, J.L.: Molecular rearrangements involved in the capsid Shell maturation of bacteriophage. J. Biol. Chem. 286(1), 234–242 (2011).  https://doi.org/10.1074/jbc.M110.187211 CrossRefGoogle Scholar
  30. 30.
    Vliegenthart, G.A., Gompper, G.: Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys. J. 91(3), 834–841 (2006).  https://doi.org/10.1529/biophysj.106.081422 ADSCrossRefGoogle Scholar
  31. 31.
    Klug, W.S., Bruinsma, R.F., Michel, J.P., Knobler, C.M., Ivanovska, I.L., Schmidt, C.F., Wuite, G.J.L.: Failure of viral shells. Phys. Rev. Lett. 97(22), 228101 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    Ivanovska, I.L., Miranda, R., Carrascosa, J.L., Wuite, G.J.L., Schmidt, C.F.: Discrete fracture patterns of virus shells reveal mechanical building blocks. Proc. Natl. Acad. Sci. U. S. A. 108(31), 12611–12616 (2011).  https://doi.org/10.1073/pnas.1105586108 ADSCrossRefGoogle Scholar
  33. 33.
    Snijder, J., Uetrecht, C., Rose, R.J., Sanchez-Eugenia, R., Marti, G.A., Agirre, J., Guerin, D.M., Wuite, G.J., Heck, A.J., Roos, W.H.: Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5(6), 502–509 (2013).  https://doi.org/10.1038/nchem.1627 CrossRefGoogle Scholar
  34. 34.
    Ortega-Esteban, A., Condezo, G.N., Perez-Berna, A.J., Chillon, M., Flint, S.J., Reguera, D., San Martin, C., de Pablo, P.J.: Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9(11), 10826–10833 (2015).  https://doi.org/10.1021/acsnano.5b03417 CrossRefGoogle Scholar
  35. 35.
    Llauro, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10(9), 8465–8473 (2016).  https://doi.org/10.1021/acsnano.6b03441 CrossRefGoogle Scholar
  36. 36.
    Llauro, A., Guerra, P., Irigoyen, N., Rodriguez, J.F., Verdaguer, N., de Pablo, P.J.: Mechanical stability and reversible fracture of vault particles. Biophys. J. 106(3), 687–695 (2014).  https://doi.org/10.1016/j.bpj.2013.12.035 ADSCrossRefGoogle Scholar
  37. 37.
    Valbuena, A., Mateu, M.G.: Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating. Nano 7(36), 14953–14964 (2015).  https://doi.org/10.1039/c5nr04023j ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física de la Materia Condensada and Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadridSpain
  2. 2.Centro Nacional de Biotecnología CNBCSICMadridSpain

Personalised recommendations