Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages

  • Ravi Kant
  • Vamseedhar Rayaprolu
  • Kaitlyn McDonald
  • Brian Bothner
Original Paper
  • 54 Downloads

Abstract

The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein–protein interactions, and protein–nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

Keywords

Virus Icosahedral QCMD Viscoelastic Protein cage 

Notes

Acknowledgements

We thank Dr. Matthew Dixon from Biolin Scientific for technical assistance. We also thank Ms. Neerja Zambare for insightful discussions. We thank Drs. David D Dunnigan, James L. Van Etten, Trevor Douglas, John E. Johnson, Adam Zlotnick, and Mavis McKenna for providing the samples for this analysis. This project was funded in part by NIH AAV grant R01 AI081961-01A1 to BB.

References

  1. 1.
    Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Basic Mech. Anim. Virus Biol. 27, 1–24 (1962)Google Scholar
  2. 2.
    Fricks, C.E., Hogle, J.M.: Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64, 1934–1945 (1990)Google Scholar
  3. 3.
    Bothner, B., Schneemann, A., Marshall, D., Reddy, V., Johnson, J.E., Siuzdak, G.: Crystallographically identical virus capsids display different properties in solution. Nat. Struct. Mol. Biol. 6, 114–116 (1999).  https://doi.org/10.1038/5799 CrossRefGoogle Scholar
  4. 4.
    Johnson, J.E., Speir, J.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).  https://doi.org/10.1006/jmbi.1997.1068 CrossRefGoogle Scholar
  5. 5.
    Gauss, G.H., Benas, P., Wiedenheft, B., Young, M., Douglas, T., Lawrence, C.M.: Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. Biochemistry 45, 10815–10827 (2006).  https://doi.org/10.1021/bi060782u CrossRefGoogle Scholar
  6. 6.
    Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., Smith, J.M., Livingstone, J.C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G.: Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).  https://doi.org/10.1038/349541a0 ADSCrossRefGoogle Scholar
  7. 7.
    Rayaprolu, V., Manning, B.M., Douglas, T., Bothner, B.: Virus particles as active nanomaterials that can rapidly change their viscoelastic properties in response to dilute solutions. Soft Matter 6, 5286 (2010).  https://doi.org/10.1039/c0sm00459f ADSCrossRefGoogle Scholar
  8. 8.
    Dutta, A.K., Belfort, G., Dutta, A.K., Belfort, G.: Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23, 3088–3094 (2007).  https://doi.org/10.1021/la0624743 CrossRefGoogle Scholar
  9. 9.
    Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008)Google Scholar
  10. 10.
    Rydell, G.E., Dahlin, A.B., Höök, F., Larson, G.: QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 19(11), 1176–1184 (2009)Google Scholar
  11. 11.
    da Silva, A.K., Kavanagh, O.V., Estes, M.K., Elimelech, M.: Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. Environ. Sci. Technol. 45, 520–526 (2011).  https://doi.org/10.1021/es102368d ADSCrossRefGoogle Scholar
  12. 12.
    Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.L.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U. S. A. 101, 7600–7605 (2004).  https://doi.org/10.1073/pnas.0308198101 ADSCrossRefGoogle Scholar
  13. 13.
    Gibbons, M., Klug, W.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007).  https://doi.org/10.1103/PhysRevE.75.031901
  14. 14.
    Roos, W.H., Wuite, G.J.L.: Nanoindentation studies reveal material properties of viruses. Adv. Mater. 21, 1187–1192 (2009).  https://doi.org/10.1002/adma.200801709 CrossRefGoogle Scholar
  15. 15.
    Nguyen, T.H., Elimelech, M.: Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility. Langmuir 23, 3273–3279 (2007).  https://doi.org/10.1021/la0622525 CrossRefGoogle Scholar
  16. 16.
    Nguyen, T.H., Chen, K.L.: Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ. Sci. Technol. 41, 5370–5375 (2007).  https://doi.org/10.1021/es070425m ADSCrossRefGoogle Scholar
  17. 17.
    Nguyen, T.H., Elimelech, M.: Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8, 24–32 (2007).  https://doi.org/10.1021/bm0603948 CrossRefGoogle Scholar
  18. 18.
    Keller, C., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397–1402 (1998).  https://doi.org/10.1016/S0006-3495(98)74057-3 ADSCrossRefGoogle Scholar
  19. 19.
    Cho, N.J., Cho, S.J., Kwang, H.C., Glenn, J.S., Frank, C.W.: Employing an amphipathic viral peptide to create a lipid bilayer on au and TiO2. J. Am. Chem. Soc. 129, 10050–10051 (2007).  https://doi.org/10.1021/ja0701412 CrossRefGoogle Scholar
  20. 20.
    Schofield, A.L., Rudd, T.R., Martin, D.S., Fernig, D.G., Edwards, C.: Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens. Bioelectron. 23, 407–413 (2007).  https://doi.org/10.1016/j.bios.2007.05.001 CrossRefGoogle Scholar
  21. 21.
    Wittmer, C.R., Phelps, J.A., Saltzman, W.M., Van Tassel, P.R.: Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 28, 851–860 (2007).  https://doi.org/10.1016/j.biomaterials.2006.09.037 CrossRefGoogle Scholar
  22. 22.
    Moreno-Madrid, F., Martín-González, N., Llauró, A., Ortega-Esteban, A., Hernando-Pérez, M., Douglas, T., Schaap, I.A.T., de Pablo, P.J.: Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45, 499–511 (2017).  https://doi.org/10.1042/BST20160316 CrossRefGoogle Scholar
  23. 23.
    Llauro, A., Schwarz, B., Koliyatt, R., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. (2016).  https://doi.org/10.1021/acsnano.6b03441
  24. 24.
    Llauró, A., Guerra, P., Irigoyen, N., Rodríguez, J.F., Verdaguer, N., De Pablo, P.J.: Mechanical stability and reversible fracture of vault particles. Biophys. J. 106, 687–695 (2014).  https://doi.org/10.1016/j.bpj.2013.12.035 ADSCrossRefGoogle Scholar
  25. 25.
    Llauro, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10(9), 8465–8473 (2016).  https://doi.org/10.1021/acsnano.6b03441
  26. 26.
    Zeng, C., Hernando-Pérez, M., Dragnea, B., Ma, X., van der Schoot, P., Zandi, R.: Contact mechanics of a small icosahedral virus. Phys. Rev. Lett. 119, 38102 (2017).  https://doi.org/10.1103/PhysRevLett.119.038102 ADSCrossRefGoogle Scholar
  27. 27.
    Llauró, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10, 8465–8473 (2016).  https://doi.org/10.1021/acsnano.6b03441 CrossRefGoogle Scholar
  28. 28.
    Kang, S., Suci, P., Broomell, C.C., Iwahori, K., Kobayashi, M., Yamashita, I., Young, M., Douglas, T.: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett. 9, 2360–2366 (2009).  https://doi.org/10.1021/nl9009028 ADSCrossRefGoogle Scholar
  29. 29.
    Steinmetz, N.F., Findlay, K.C., Noel, T.R., Parker, R., Lomonossoff, G.P., Evans, D.J.: Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9, 1662–1670 (2008).  https://doi.org/10.1002/cbic.200800070 CrossRefGoogle Scholar
  30. 30.
    Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, C.L., Reddy, V.S.: VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436–D442 (2009).  https://doi.org/10.1093/nar/gkn840 CrossRefGoogle Scholar
  31. 31.
    Grimm, D., Kay, M.: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 3, 281–304 (2003)CrossRefGoogle Scholar
  32. 32.
    Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O.: The role of the adeno-associated virus capsid in gene transfer. Methods Mol. Biol. 437, 51–91 (2008).  https://doi.org/10.1007/978-1-59745-210-6_2 CrossRefGoogle Scholar
  33. 33.
    Rayaprolu, V., Kruse, S., Kant, R., Venkatakrishnan, B., Movahed, N., Brooke, D., Lins, B., Bennett, A., Potter, T., McKenna, R., Agbandje-McKenna, M., Bothner, B.: Comparative analysis of adeno-associated virus capsid stability and dynamics. J. Virol. 87, 13150–13160 (2013).  https://doi.org/10.1128/JVI.01415-13 CrossRefGoogle Scholar
  34. 34.
    Bennett, A., Patel, S., Mietzsch, M., Jose, A., Lins-Austin, B., Yu, J.C., Bothner, B., McKenna, R., Agbandje-McKenna, M.: Thermal stability as a determinant of AAV serotype identity. Mol. Ther. Methods Clin. Dev. 6, 171–182 (2017).  https://doi.org/10.1016/j.omtm.2017.07.003 CrossRefGoogle Scholar
  35. 35.
    Zeng, C., Moller-Tank, S., Asokan, A., Dragnea, B.: Probing the link among genomic cargo, contact mechanics, and nanoindentation in recombinant adeno-associated virus 2. J. Phys. Chem. B 121, 1843–1853 (2017).  https://doi.org/10.1021/acs.jpcb.6b10131 CrossRefGoogle Scholar
  36. 36.
    Willits, D., Zhao, X., Olson, N., Baker, T.S., Zlotnick, A., Johnson, J.E., Douglas, T., Young, M.J.: Effects of the cowpea chlorotic mottle bromovirus Î2-hexamer structure on virion assembly. Virology 306, 280 (2003)CrossRefGoogle Scholar
  37. 37.
    Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010).  https://doi.org/10.1038/nphys1797 CrossRefGoogle Scholar
  38. 38.
    Wang, J.C.-Y., Dhason, M.S., Zlotnick, A.: Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog. 8, e1002919 (2012).  https://doi.org/10.1371/journal.ppat.1002919 CrossRefGoogle Scholar
  39. 39.
    Selzer, L., Kant, R., Wang, J.C.-Y.Y., Bothner, B., Zlotnick, A.: Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J. Biol. Chem. 290, 28584–28593 (2015).  https://doi.org/10.1074/jbc.M115.678441
  40. 40.
    Matsui, T., Lander, G., Johnson, J.E.: Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J. Virol. 83, 1126–1134 (2009).  https://doi.org/10.1128/JVI.01859-08 CrossRefGoogle Scholar
  41. 41.
    Banerjee, M., Khayat, R., Walukiewicz, H.E., Odegard, A.L., Schneemann, A., Johnson, J.E.: Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J. Virol. 83, 6929–6933 (2009).  https://doi.org/10.1128/JVI.02299-08 CrossRefGoogle Scholar
  42. 42.
    Jordan, P.C., Patterson, D.P., Saboda, K.N., Edwards, E.J., Miettinen, H.M., Basu, G., Thielges, M.C., Douglas, T.: Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 8, 179–185 (2016).  https://doi.org/10.1038/nchem.2416 CrossRefGoogle Scholar
  43. 43.
    Zhou, Z., Bedwell, G.J., Li, R., Bao, N., Prevelige, P.E., Gupta, A.: P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem. Commun. 51, 1062–1065 (2015).  https://doi.org/10.1039/C4CC08057B CrossRefGoogle Scholar
  44. 44.
    Qazi, S., Miettinen, H.M., Wilkinson, R.A., McCoy, K., Douglas, T., Wiedenheft, B.: Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol. Pharm. 13, 1191–1196 (2016).  https://doi.org/10.1021/acs.molpharmaceut.5b00822 CrossRefGoogle Scholar
  45. 45.
    Douglas, T., Young, M.: Host–guest encapsulation of materials by assembled virus protein cages. Int. J. Sci. 393, 1996–1999 (1998)Google Scholar
  46. 46.
    Nassal, M., Schaller, H.: Hepatitis B virus replication. Trends Microbiol. 1, 221–228 (1993).  https://doi.org/10.1016/0966-842X(93)90136-F CrossRefGoogle Scholar
  47. 47.
    Purohit, P.K., Inamdar, M.M., Grayson, P.D., Squires, T.M., Kondev, J., Phillips, R.: Forces during bacteriophage DNA packaging and ejection. Biophys. J. 88, 851–866 (2005).  https://doi.org/10.1529/BIOPHYSJ.104.047134 CrossRefGoogle Scholar
  48. 48.
    Llauró, A., Luque, D., Edwards, E., Trus, B.L., Avera, J., Reguera, D., Douglas, T., de Pablo, P.J., Castón, J.R.: Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nano 8, 9328–9336 (2016).  https://doi.org/10.1039/c6nr01007e ADSGoogle Scholar
  49. 49.
    Klug, W., Bruinsma, R., Michel, J.-P., Knobler, C., Ivanovska, I., Schmidt, C., Wuite, G.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006).  https://doi.org/10.1103/PhysRevLett.97.228101
  50. 50.
    Cieplak, M., Robbins, M.O.: Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS ONE 8, e63640 (2013).  https://doi.org/10.1371/journal.pone.0063640
  51. 51.
    Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations. Proc. Natl. Acad. Sci. USA 103(16), 6184–6189 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  2. 2.Department of Cell Biology and NeuroscienceMontana State UniversityBozemanUSA

Personalised recommendations