Molecular dynamics study of T = 3 capsid assembly

Original Paper
  • 22 Downloads

Abstract

Molecular dynamics simulation is used to model the self-assembly of polyhedral shells containing 180 trapezoidal particles that correspond to the T = 3 virus capsid. Three kinds of particle, differing only slightly in shape, are used to account for the effect of quasi-equivalence. Bond formation between particles is reversible and an explicit atomistic solvent is included. Under suitable conditions the simulations are able to produce complete shells, with the majority of unused particles remaining as monomers, and practically no other clusters. There are also no incorrectly assembled clusters. The simulations reveal details of intermediate structures along the growth pathway, information that is relevant for interpreting experiment.

Keywords

Self-assembly Virus Capsid Simulation 

Notes

Compliance with Ethical Standards

Conflict of interests

The author declares that there is no conflict of interest.

References

  1. 1.
    Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962)CrossRefGoogle Scholar
  2. 2.
    Crick, F.H.C., Watson, J.D.: The structure of small viruses. Nature (Lond.) 177, 473 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862 (1999)Google Scholar
  4. 4.
    Casini, G.L., Graham, D., Heine, D., Garcea, R.L., Wu, D.T.: In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325, 320 (2004)CrossRefGoogle Scholar
  5. 5.
    Prevelige, P.E., Thomas, D., King, J.: Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. J. 64, 824 (1993)CrossRefGoogle Scholar
  6. 6.
    Zlotnick, A., Mukhopadhyay, S.: Virus assembly, allostery and antivirals. Trends Microbiol. 19, 14 (2011)CrossRefGoogle Scholar
  7. 7.
    Caspar, D.L.D.: Movement and self-control in protein assemblies: quasi-equivalence revisited. Biophys. J. 32, 103 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Twarock, R.: A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101, 15556 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Hicks, S.D., Henley, C.L.: Irreversible growth model for virus capsid assembly. Phys. Rev. E 74, 031912 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Hemberg, M., Yaliraki, S.N., Barahona, M.: Stochastic kinetics of viral capsid assembly based on detailed protein structures. Biophys. J. 90, 3029 (2006)CrossRefGoogle Scholar
  13. 13.
    Zandi, R., van der Schoot, P., Reguera, D., Kegel, W., Reiss, H.: Classical nucleation theory of virus capsids. Biophys. J. 90, 1939 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Moisant, P., Neeman, H., Zlotnick, A.: Exploring the paths of (virus) assembly. Biophys. J. 99, 1350 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Keef, T., Micheletti, C., Twarock, R.: Master equation approach to the assembly of viral capsids. J. Theor. Biol. 242, 713 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Polles, G., Indelicato, G., Potestio, R., Cermelli, P., Twarock, R., Micheletti, C.: Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition. PLOS Comp. Biol. 9, e1003331 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Hagan, M.F., Elrad, O.: Understanding the concentration dependence of viral capsid assembly kinetics - the origin of the lag time and identifying the critical nucleus size. Biophys. J. 98, 1065 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Morozov, A.Y., Bruinsma, R.F., Rudnick, J.: Assembly of viruses and the pseudo-law of mass action. J. Chem. Phys. 131, 155101 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Ceres, P., Zlotnick, A.: Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41, 11525 (2002)CrossRefGoogle Scholar
  20. 20.
    Johnson, J.M., Tang, J., Nyame, Y., Willits, D., Young, M.J., Zlotnick, A.: Regulating self-assembly of spherical oligomers. Nanoletters 5, 765 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    van der Schoot, P., Zandi, R.: Kinetic theory of virus capsid assembly. Phys. Biol. 4, 296 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Zlotnick, A., Johnson, J.M., Wingfield, P.W., Stahl, S.J., Endres, D.: A theoretical model successfully identifies features of Hepatitis B virus capsid assembly. Biochemistry 38, 14644 (1999)CrossRefGoogle Scholar
  23. 23.
    Zlotnick, A.: Distinguishing reversible from irreversible virus capsid assembly. J. Mol. Biol. 366, 14 (2007)CrossRefGoogle Scholar
  24. 24.
    Hagan, M.F., Chandler, D.: Dynamic pathways for viral capsid assembly. Biophys. J. 91, 42 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Nguyen, H.D., Reddy, V.S., Brooks, IIIC.L.: Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett. 7, 338 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Rapaport, D.C.: Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 101, 186101 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Rapaport, D.C., Johnson, J.E., Skolnick, J.: Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation. Comp. Phys. Comm. 121, 231 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Johnston, I.G., Louis, A.A., Doye, J.P.K.: Modelling the self-assembly of virus capsids. J. Phys.: Condens. Matter 22, 104101 (2010)ADSGoogle Scholar
  29. 29.
    Wilber, A.W., Doye, J.P.K., Louis, A.A., Noya, E.G., Miller, M.A., Wong, P.: Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 127, 085106 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Hagan, M.F.: Modeling viral capsid assembly. Adv. Chem. Phys. 155, 1 (2014)Google Scholar
  31. 31.
    Breen, T.L., Tien, J., Oliver, S.R.J., Hadzic, T., Whitesides, G.M.: Design and self-assembly of open, regular, 3d mesostructures. Science 284, 948 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Rapaport, D.C.: Self-assembly of polyhedral shells: a molecular dynamics study. Phys. Rev. E 70, 051905 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Rapaport, D.C.: Molecular dynamics simulation of reversibly self-assembling shells in solution using trapezoidal particles. Phys. Rev. E 86, 051917 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Endres, D., Zlotnick, A.: Model-based analysis of assembly kinetics for virus capsids and other spherical polymers. Biophys. J. 83, 1217 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Medrano, M., Fuertes, M.A., Valbuena, A., Carrillo, P.J.P., Rodrìguez-huete, A., Mateu, M.G.: Imaging and quantitation of a succession of transient intermediates reveal the reversible self-assembly pathway of a simple icosahedral virus capsid. J. Am. Chem. Soc. 138, 15385 (2016)CrossRefGoogle Scholar
  36. 36.
    Casjens, S.: An introduction to virus structure and assembly. In: Casjens, S. (ed.) Virus structure and assembly, p 1. Jones and Bartlett, Boston (1985)Google Scholar
  37. 37.
    Rossmann, M.G., Erickson, J.W.: Structure and Assembly of Icosahedral Shells. In: Casjens, S. (ed.) Virus Structure and Assembly, p 30. Jones and Bartlett, Boston (1985)Google Scholar
  38. 38.
    Williams, R.: The Geometric Foundation of Natural Structure. Dover Publications Inc., NY (1979)Google Scholar
  39. 39.
    Rapaport, D.C.: The art of molecular dynamics simulation, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  40. 40.
    Spaeth, J.R., Kevrekidis, I.G., Panagiotopoulos, A.Z.: A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 134, 164902 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Rapaport, D.C.: Enhanced molecular dynamics performance with a programmable graphics processor. Comput. Phys. Comm. 182, 926 (2011)ADSCrossRefMATHGoogle Scholar
  42. 42.
    Rapaport, D.C.: Molecular dynamics simulation: a tool for exploration and discovery using simple models. J. Phys.: Condens. Matter 26, 503104 (2014)Google Scholar
  43. 43.
    Rapaport, D.C.: Modeling capsid self-assembly: design and analysis. Phys. Biol. 7, 045001 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations