Journal of Biological Physics

, Volume 43, Issue 2, pp 167–184 | Cite as

Semi-classical statistical description of Fröhlich condensation

  • Jordane Preto


Fröhlich’s model equations describing phonon condensation in open systems of biological relevance are reinvestigated within a semi-classical statistical framework. The main assumptions needed to deduce Fröhlich’s rate equations are identified and it is shown how they lead us to write an appropriate form for the corresponding master equation. It is shown how solutions of the master equation can be numerically computed and can highlight typical features of the condensation effect. Our approach provides much more information compared to the existing ones as it allows to investigate the time evolution of the probability density function instead of following single averaged quantities. The current work is also motivated, on the one hand, by recent experimental evidences of long-lived excited modes in the protein structure of hen-egg white lysozyme, which were reported as a consequence of the condensation effect, and, on the other hand, by a growing interest in investigating long-range effects of electromagnetic origin and their influence on the dynamics of biochemical reactions.


Fröhlich condensation Low-frequency modes of proteins Far-from-equilibrium systems 


  1. 1.
    Haken, H.: Synergetics, an Introduction : Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry and Biology. Springer-Verlag, New York (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Fröhlich, H.: Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 2, 641–649 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    Fröhlich, H.: Coherent Electric Vibrations in Biological Systems and the Cancer Problem. IEEE Trans. Microwave Theor. & Techn. 26, 613 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    Fröhlich, H.: The biological effects of microwaves and related questions. Adv. Electron. Electron. Phys. 53, 85 (1980)CrossRefGoogle Scholar
  5. 5.
    Cifra, M., Fields, J.Z., Farhadi, A.: Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105, 223–246 (2011)CrossRefGoogle Scholar
  6. 6.
    Wu, T.M., Austin, S.: Bose condensation in biosystems. Phys. Lett. A 64, 151–152 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    Pokorný, J., Wu, T.M.: Biophysical Aspects of Coherence and Biological Order. Springer, Berlin (1998)CrossRefGoogle Scholar
  8. 8.
    Tuszynski, J.A., Bolterauer, H., Sataric, M.V.: Self-organization in biological membranes and the relationship between Fröhlich and Davydov theories. Nanobiol 1, 177–190 (2012)Google Scholar
  9. 9.
    Mesquita, M.V., Vasconcellos, Á.R., Luzzi, R., Mascarenhas, S.: Large-scale quantum effects in biological systems. Int. J. Quantum Chem. 102, 1116–1130 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Weightman, P.: Prospects for the study of biological systems with high power sources of terahertz radiation. Phys. Biol. 9(5), 053001 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Wilmink, G.J., Grundt, J.E.: Invited review article: current state of research on biological effects of terahertz radiation. Journal of Infrared Millimeter, and Terahertz Waves 32(10), 1074–1122 (2011)CrossRefGoogle Scholar
  12. 12.
    Reimers, J.R., McKemmish, L.K., McKenzie, R.H., Mark, A.E., Hush, N.S.: Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. U.S.A. 106(11), 4219–4224 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Sewell, G.L.: Quantum macrostatistical theory of nonequilibrium steady states. Reviews in Mathematical Physics 17(09), 977–1020 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kadji, H.E., Orou, J.C., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos, Solitons & Fractals 32(2), 862–882 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Belloni, F., Nassisi, V., Alifano, P., Monaco, C., Tala, A., Tredici, M., Raino, A.: A suitable plane transmission line at 900mhz rf fields for E. coli DNA studies. Rev. Sci. Instrum. 76(5), 054302 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Pakhomov, A.G., Akyel, Y., Pakhomova, O.N., Stuck, B.E., Murphy, M.R.: Current state and implications of research on biological effects of millimeter waves. Bioelectromagnetics 19(7), 393–413 (1998)CrossRefGoogle Scholar
  17. 17.
    Gervino, G., Autino, E., Kolomoets, E., Leucci, G., Balma, M.: Diagnosis of bladder cancer at 465 mhz. Electromagn. Biol. Med. 26(2), 119–134 (2007)CrossRefGoogle Scholar
  18. 18.
    Del Giudice, E., De Ninno, A., Fleischmann, M., Mengoli, G., Milani, M., Talpo, G., Vitiello, G.: Coherent quantum electrodynamics in living matter. Electromagn. Biol. Med. 24(3), 199–210 (2005)CrossRefGoogle Scholar
  19. 19.
    Lundholm, I.V., Rodilla, H., Wahlgren, W.Y., Duelli, A., Bourenkov, G., Vukusic, J., Friedman, R., Stake, J., Schneider, T., Katona, G.: Terahertz radiation induces non-thermal structural changes associated with Frhlich condensation in a protein crystal. Struct. Dyn. 2, 054702 (2015)CrossRefGoogle Scholar
  20. 20.
    Salari, V., Tuszynski, J.A., Bokkon, I., Rahnama, M., Cifra, M.: On the Photonic Cellular Interaction and the Electric Activity of Neurons in the Human Brain. J. Phys. Conf. Ser. 329, 012006 (2011). doi: 10.1088/1742-6596/329/1/012006 CrossRefGoogle Scholar
  21. 21.
    Pokorný, J.: Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 48, 267–271 (1999)CrossRefGoogle Scholar
  22. 22.
    Pokorný, J.: Biophysical cancer transformation pathway. Electromagn. Biol. Med. 28, 105–123 (2009)CrossRefGoogle Scholar
  23. 23.
    Weightman, P.: Investigation of the Fröhlich hypothesis with high intensity terahertz radiation. In: Proc. SPIE 8941, Optical Interactions with Tissue and Cells XXV; and Terahertz for Biomedical Applications, 89411F (March 13, 2014). doi: 10.1117/12.2057397 (2014)
  24. 24.
    Preto, J., Pettini, M.: Resonant long-range interactions between polar macromolecules. Phys. Lett. A 377, 587–591 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Preto, J., Pettini, M., Tuszynski, J.A.: Possible role of electrodynamic interactions in long-distance biomolecular recognition. Phys. Rev. E 91, 052710 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Rowlands, S., Sewchand, L.S., Lovlin, R.E., Beck, J.S., Enns, E.G.: A Fröhlich interaction of human erythrocytes. Phys. Lett. A 82, 436–438 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    Rowlands, S., Sewchand, L.S., Enns, E.G.: Further evidence for a Fröhlich interaction of erythrocytes. Phys. Lett. A 87, 256–260 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    Preto, J., Floriani, E., Nardecchia, I., Ferrier, P., Pettini, M.: Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis. Phys. Rev. E 85, 041904 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Nardecchia, I., Spinelli, L., Preto, J., Gori, M., Floriani, E., Jaeger, S., Ferrier, P., Pettini, M.: Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: Numerical study. Phys. Rev. E 90, 022703 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Gardiner, C.W.: A Handbook of Stochastic Methods. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  31. 31.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. pp. 104-109 and pp. 238-246. Wiley, New-York (1973)Google Scholar
  32. 32.
    Hameroff, S.: Quantum computation in brain microtubules? The Penrose-Hameroff ’Orch OR’ model of consciousness. Phil Trans. R. Soc. London Ser. A 356, 1869–1896 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  34. 34.
    Preto, J.: Classical investigation of long-range coherence in biological systems. Chaos 26(12), 123116 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Gardiner, C.W., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, New York (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Oncology3-336, Cross Cancer InstituteEdmontonCanada

Personalised recommendations