Skip to main content
Log in

Using three-point bending to evaluate tibia bone strength in ovariectomized young mice

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

It is well known that estrogen deficiency induces a deterioration of bone strength in aged females. The aim of this study is to determine the effect of estrogen depletion on tibia bone strength in sexually mature mice that are still undergoing skeletal maturation. At 8 weeks of age, C57BL/6 female mice underwent an ovariectomy (OVX) or sham (SHAM) surgery. Mice were killed at 2, 4, or 8 weeks post-surgery. Tibia length and cross-sectional area continued to increase in both treatment groups until 4 weeks post-surgery. Compared to SHAM mice, OVX mice demonstrated a significant reduction in uterine weight and plasma estrogen levels. Three-point bending was used to quantify the mechanical properties (breaking point, stress, stiffness, and elasticity) of the tibia. The tibias from the SHAM mice had a higher breaking point than all the age-matched OVX mice. At 8 weeks post-surgery, the tibias from the SHAM mice demonstrated higher elasticity, stress, and stiffness than the younger SHAM mice and the age-matched OVX mice. Compared to the SHAM mice, our study suggests that (1) there is a reduction in the mechanical strength of tibias from young OVX mice, and (2) the greatest decline in tibia strength of the OVX mice was once they reached skeletal maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adeel, S., Singh, K., Vydareny, K.H., Kumari, M., Shah, E., Weitzmann, M.N., Tangpricha, V.: Bone loss in surgically ovariectomized pre-menopausal women is associated with T lymphocyte activation and thymic hypertrophy. J. Investig. Med.: Off. Publ. Am Fed. Clin. Res. 61(8), 1178–1183 (2013). doi:10.231/JIM.0000000000000016

    Article  Google Scholar 

  2. Baykan, E.K., Erdoğan, M., Özen, S., Darcan, Ş., Saygılı, L.F.: Aromatase deficiency, a rare syndrome: case report. J. Clin. Res. Pediatr. Endocrinol. 5(2), 129–132 (2013). doi:10.4274/Jcrpe.970

    Article  Google Scholar 

  3. Bulun, S.E.: Aromatase and estrogen receptor alpha deficiency. Fertil. Steril. 101(2), 323–329 (2014). doi:10.1016/j.fertnstert.2013.12.022

    Article  Google Scholar 

  4. Almeida, O.M., Jorgetti, W., Oksman, D., Jorgetti, C., Rocha, D.L., Gemperli, R.: Comparative study and histomorphometric analysis of bone allografts lyophilized and sterilized by autoclaving, gamma irradiation and ethylene oxide in rats. Acta Cir. Bras. 28(1), 66–71 (2013)

    Article  Google Scholar 

  5. Riggs, B.L.: Endocrine causes of age-related bone loss and osteoporosis. Novartis Found. Symp. 242, 247–259 (2002). discussion 260–244

    Article  Google Scholar 

  6. Ornoy, A., Giron, S., Aner, R., Goldstein, M., Boyan, B.D., Schwartz, Z.: Gender-dependent effects of testosterone and 17 beta-estradiol on bone growth and modelling in young mice. Bone Miner. 24(1), 43–58 (1994)

    Article  Google Scholar 

  7. Main, R.P., Lynch, M.E., van der Meulen, M.C.: Load-induced changes in bone stiffness and cancellous and cortical bone mass following tibial compression diminish with age in female mice. J. Exp. Biol. 217(Pt 10), 1775–1783 (2014). doi:10.1242/jeb.085522

    Article  Google Scholar 

  8. Lang, D.H., Sharkey, N.A., Lionikas, A., Mack, H.A., Larsson, L., Vogler, G.P., Vandenbergh, D.J., Blizard, D.A., Stout, J.T., Stitt, J.P., McClearn, G.E.: Adjusting data to body size: a comparison of methods as applied to quantitative trait loci analysis of musculoskeletal phenotypes. J. Bone Miner. Res. 20(5), 748–757 (2005). doi:10.1359/JBMR.041224

    Article  Google Scholar 

  9. Razi, H., Birkhold, A.I., Zaslansky, P., Weinkamer, R., Duda, G.N., Willie, B.M., Checa, S.: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study. Acta Biomater. 13, 301–310 (2015). doi:10.1016/j.actbio.2014.11.021

    Article  Google Scholar 

  10. Bouxsein, M.L., Myers, K.S., Shultz, K.L., Donahue, L.R., Rosen, C.J., Beamer, W.G.: Ovariectomy-induced bone loss varies among inbred strains of mice. J. Bone Miner. Res. 20(7), 1085–1092 (2005). doi:10.1359/JBMR.050307

    Article  Google Scholar 

  11. Nelson, J.F., Karelus, K., Felicio, L.S., Johnson, T.E.: Genetic influences on the timing of puberty in mice. Biol. Reprod. 42(4), 649–655 (1990)

    Article  Google Scholar 

  12. Glatt, V., Canalis, E., Stadmeyer, L., Bouxsein, M.L.: Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J. Bone Miner. Res. 22(8), 1197–1207 (2007). doi:10.1359/jbmr.070507

    Article  Google Scholar 

  13. Somerville, J.M., Aspden, R.M., Armour, K.E., Armour, K.J., Reid, D.M.: Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcif. Tissue Int. 74(5), 469–475 (2004). doi:10.1007/s00223-003-0101-x

    Article  Google Scholar 

  14. Beamer, W.G., Donahue, L.R., Rosen, C.J., Baylink, D.J.: Genetic variability in adult bone density among inbred strains of mice. Bone 18(5), 397–403 (1996)

    Article  Google Scholar 

  15. Cao, J.J., Gregoire, B.R.: A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice. Nutr. Res. 36(4), 320–327 (2016). doi:10.1016/j.nutres.2015.12.008

    Article  Google Scholar 

  16. Walker, A.H., Perkins, O., Mehta, R., Ali, N., Dobretsov, M., Chowdhury, P.: Changes in mechanical properties of rat bones under simulated effects of microgravity and radiation. Phys. Procedia 66, 610–616 (2015). doi:10.1016/j.phpro.2015.05.081

    Article  ADS  Google Scholar 

  17. Jiao, F., Chiu, H., Jiao, Y., de Rijk, W.G., Li, X., Eckstein, E.C., Beamer, W.G., Gu, W.: Quantitative trait loci for tibial bone strength in C57BL/6J and C3H/HeJ inbred strains of mice. J. Genet. 89(1), 21–27 (2010)

    Article  Google Scholar 

  18. Tuukkanen, J., Koivukangas, A., Jamsa, T., Sundquist, K., Mackay, C.A., Marks Jr., S.C.: Mineral density and bone strength are dissociated in long bones of rat osteopetrotic mutations. J. Bone Miner. Res. 15(10), 1905–1911 (2000). doi:10.1359/jbmr.2000.15.10.1905

    Article  Google Scholar 

  19. Ritchie, R.O., Koester, K.J., Ionova, S., Yao, W., Lane, N.E., Ager 3rd, J.W.: Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43(5), 798–812 (2008). doi:10.1016/j.bone.2008.04.027

    Article  Google Scholar 

  20. Kamal, B., Russell, D., Payne, A., Constante, D., Tanner, K.E., Isaksson, H., Mathavan, N., Cobb, S.R.: Biomechanical properties of bone in a mouse model of Rett syndrome. Bone 71, 106–114 (2015). doi:10.1016/j.bone.2014.10.008

    Article  Google Scholar 

  21. Windahl, S.H., Andersson, N., Chagin, A.S., Martensson, U.E., Carlsten, H., Olde, B., Swanson, C., Moverare-Skrtic, S., Savendahl, L., Lagerquist, M.K., Leeb-Lundberg, L.M., Ohlsson, C.: The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. Am. J. Physiol. Endocrinol. Metab. 296(3), E490–496 (2009). doi:10.1152/ajpendo.90691.2008

    Article  Google Scholar 

  22. Stubbins, R.E., Holcomb, V.B., Hong, J., Nunez, N.P.: Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 51(7), 861–870 (2012). doi:10.1007/s00394-011-0266-4

    Article  Google Scholar 

  23. Iwaniec, U.T., Turner, R.T.: Influence of body weight on bone mass, architecture and turnover. J. Endocrinol. 230(3), R115–130 (2016). doi:10.1530/JOE-16-0089

    Article  Google Scholar 

  24. Rouach, V., Katzburg, S., Koch, Y., Stern, N., Somjen, D.: Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH. J. Cell. Biochem. 112(1), 128–137 (2011). doi:10.1002/jcb.22908

    Article  Google Scholar 

  25. Sun, L., Peng, Y., Sharrow, A.C., Iqbal, J., Zhang, Z., Papachristou, D.J., Zaidi, S., Zhu, L.L., Yaroslavskiy, B.B., Zhou, H., Zallone, A., Sairam, M.R., Kumar, T.R., Bo, W., Braun, J., Cardoso-Landa, L., Schaffler, M.B., Moonga, B.S., Blair, H.C., Zaidi, M.: FSH directly regulates bone mass. Cell 125(2), 247–260 (2006). doi:10.1016/j.cell.2006.01.051

    Article  Google Scholar 

  26. Ozbek, M.N., Demirbilek, H., Baran, R.T., Baran, A.: Bone mineral density in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism. J. Clin. Res. Pediatr. Endocrinol. 8(2), 163–169 (2016). doi:10.4274/jcrpe.2228

    Article  Google Scholar 

  27. Nakamura, T., Imai, Y., Matsumoto, T., Sato, S., Takeuchi, K., Igarashi, K., Harada, Y., Azuma, Y., Krust, A., Yamamoto, Y., Nishina, H., Takeda, S., Takayanagi, H., Metzger, D., Kanno, J., Takaoka, K., Martin, T.J., Chambon, P., Kato, S.: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130(5), 811–823 (2007). doi:10.1016/j.cell.2007.07.025

    Article  Google Scholar 

  28. Wang, L., Liu, S., Zhao, Y., Liu, D., Liu, Y., Chen, C., Karray, S., Shi, S., Jin, Y.: Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 22(10), 1654–1664 (2015). doi:10.1038/cdd.2015.14

    Article  Google Scholar 

  29. Moverare-Skrtic, S., Wu, J., Henning, P., Gustafsson, K.L., Sjogren, K., Windahl, S.H., Koskela, A., Tuukkanen, J., Borjesson, A.E., Lagerquist, M.K., Lerner, U.H., Zhang, F.P., Gustafsson, J.A., Poutanen, M., Ohlsson, C.: The bone-sparing effects of estrogen and WNT16 are independent of each other. Proc. Natl. Acad. Sci. U. S. A. 112(48), 14972–14977 (2015). doi:10.1073/pnas.1520408112

    Article  ADS  Google Scholar 

  30. Todd, H., Galea, G.L., Meakin, L.B., Delisser, P.J., Lanyon, L.E., Windahl, S.H., Price, J.S.: Wnt16 is associated with age-related bone loss and estrogen withdrawal in murine bone. PLoS ONE 10(10), e0140260 (2015). doi:10.1371/journal.pone.0140260

    Article  Google Scholar 

  31. LeBlanc, A.J., Reyes, R., Kang, L.S., Dailey, R.A., Stallone, J.N., Moningka, N.C., Muller-Delp, J.M.: Estrogen replacement restores flow-induced vasodilation in coronary arterioles of aged and ovariectomized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297(6), R1713–1723 (2009). doi:10.1152/ajpregu.00178.2009

    Article  Google Scholar 

Download references

Acknowledgments

Support was provided by grants from the National Institutes of Health (NIH) National Institute of General Medical Sciences (NIGMS) (P20 GM103429) to B.J.F.H. and the Arkansas Space Grant Consortium to A.W. Assistance was provided by Dr. Rahul Mehta (Dept of Physics & Astronomy) and Otis Perkins (undergraduate student). Analysis of plasma estrogen was conducted by The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core, which is supported by the Eunice Kennedy Shriver NICHD/NIH (SCCPIR) Grant U54-HD28934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent J. F. Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deckard, C., Walker, A. & Hill, B.J.F. Using three-point bending to evaluate tibia bone strength in ovariectomized young mice. J Biol Phys 43, 139–148 (2017). https://doi.org/10.1007/s10867-016-9439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9439-y

Keywords

Navigation