Skip to main content

Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production


Triosephosphate isomerase (TIM) is often described as a fully evolved housekeeping enzyme with near-maximal possible reaction rate. The assumption that an enzyme is perfectly evolved has not been easy to confirm or refute. In this paper, we use maximization of entropy production within known constraints to examine this assumption by calculating steady-state cyclic flux, corresponding entropy production, and catalytic activity in a reversible four-state scheme of TIM functional states. The maximal entropy production (MaxEP) requirement for any of the first three transitions between TIM functional states leads to decreased total entropy production. Only the MaxEP requirement for the product (R-glyceraldehyde-3-phosphate) release step led to a 30% increase in enzyme activity, specificity constant kcat/KM, and overall entropy production. The product release step, due to the TIM molecular machine working in the physiological direction of glycolysis, has not been identified before as the rate-limiting step by using irreversible thermodynamics. Together with structural studies, our results open the possibility for finding amino acid substitutions leading to an increased frequency of loop six opening and product release.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Triosephosphate isomerase


Dihydroxyacetone phosphate


d-glyceraldehyde 3-phosphate


Maximum entropy production


  1. 1.

    Cooper, G.M.: The Cell: a Molecular Approach. The central role of enzymes as biological catalysts. 2nd edition, Sunderland (MA): Sinauer Associates. (2000)

  2. 2.

    Heinrich, R., Schuster, S., Holzhütter, H.-G.: Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21 (1991)

    Article  Google Scholar 

  3. 3.

    Marin-Sanguino, A., Torres, N.: Modeling, steady state analysis and optimization of the catalytic efficiency of the triosephosphate isomerase. Bull. Math. Biol. 64(2), 301–326 (2002)

    Article  MATH  Google Scholar 

  4. 4.

    Dobovišek, A., Županović, P., Brumen, M., Juretić, D.: Maximum entropy production and maximum Shannon entropy as germane principles for the evolution of enzyme kinetics. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law, pp. 361–382. Springer, Berlin (2014)

  5. 5.

    Albery, W.J., Knowles, J.R.: Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976)

    Article  Google Scholar 

  6. 6.

    Wierenga, R.K., Kapetaniou, E.G., Venkatesan, R.: Triophosphate isomerase: a highly evolved biocatalyst. Cell. Mol. Life. Sci. 67, 3961–3982 (2010)

    Article  Google Scholar 

  7. 7.

    Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics. Dover Publications, Inc. (2005)

  8. 8.

    Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)

  9. 9.

    Kleidon, A., Lorenz, R.D.: Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Berlin (2005)

  10. 10.

    Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Martyushev, L.M., Seleznev, V.D.: The restrictions of the maximum entropy production principle. Phys A: Stat. Mech. Appl. 410, 17–21 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dobovišek, A., Županović, P., Brumen, M., Bonačić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)

    Article  MATH  Google Scholar 

  13. 13.

    Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)

    Article  MATH  Google Scholar 

  14. 14.

    Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    Knowles, J.R., Albery, W.J.: Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc. Chem. Res. 10, 105–111 (1977)

    Article  Google Scholar 

  16. 16.

    Daar, I.O., Artymuik, P.J., Phillips, D.C., Maquat, L.E.: Human triose-phosphate isomerase deficiency: a single amino acid substitution leads in a thermolabile enzyme. Proc. Natl. Acad. Sci. U. S. A. 83, 7903–7907 (1986)

    ADS  Article  Google Scholar 

  17. 17.

    Williams, J.C., Zeelen, J.P., Neubauer, G., Vriend, G., Backmann, J., Michels, P.A.M., Lambeir, A.-M., Wierenga, R.K.: Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng. 12, 243–250 (1999)

  18. 18.

    Hill, T.L.: Free Energy Transduction in Biology. The Steady State Kinetic and Thermodynamic Formalism. Academic Press, New York (1977)

  19. 19.

    Rozovsky, S., McDermott, A.E.: Substrate product equilibrium on a reversible enzyme triosephosphate isomerase. Proc. Natl. Acad. Sci. U. S. A. 104, 2080–2085 (2007)

    ADS  Article  Google Scholar 

  20. 20.

    Eisenthal, R., Danson, M.J., Hough, D.W.: Catalytic efficiency and kcat/KM: useful comparator? Trends in Biotechnology 25(6), 247–249 (2007). doi:10.1016/j.tibtech.2007.03.010

  21. 21.

    Johnson, K.A.: Transient-state kinetic analysis of enzyme reaction pathways. Enzymes 20, 1–61 (1992)

    Article  Google Scholar 

  22. 22.

    Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 289–295 (1992)

    Article  Google Scholar 

  23. 23.

    Dewar, R.C., Maritan, A.: A theoretical basis for maximum entropy production. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law, pp. 49–71. Springer, Berlin (2014)

  24. 24.

    Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931). doi:10.1103/PhysRev.37.405

    ADS  Article  MATH  Google Scholar 

  25. 25.

    Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    ADS  Article  MATH  Google Scholar 

  26. 26.

    Županović, P., Kuić, D., Lošić, Ž.B., Petrov, D., Juretić, D., Brumen, M.: The maximum entropy production principle and linear irreversible processes. Entropy 12, 996–1005 (2010). doi:10.3390/e12050996

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Hackl, K., Fischer, F.D., Svoboda, J.A.: Study on the principle of maximum dissipation for coupled and non-coupled non-isothermal processes in materials. Proc. R. Soc. A 467, 1186–1196 (2011). doi:10.1098/rspa.2010.0179

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Ross, J., Vlad, M.O.: Exact solutions for the entropy production rate of several irreversible processes. J. Phys. Chem. A 109, 10607–10612 (2005)

    Article  Google Scholar 

  29. 29.

    Beretta, G.P.: Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes. Rep. Math. Phys. 64, 139–168 (2009). doi:10.1016/S0034-4877(09)90024-6

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Martyushev, L.M.: Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15, 1152–1170 (2013). doi:10.3390/e15041152

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Andersen, B., Zimmerman, E.C., Ross, J.: Objections to a proposal on the rate of entropy production in systems far from equilibrium. J. Chem. Phys. 81, 4676–4677 (1984)

    ADS  Article  Google Scholar 

  32. 32.

    Ross, J., Corlan, A.D., Müller, S.C.: Proposed principle of maximum local entropy production. J. Phys. Chem. B 116, 7858–7865 (2012)

    Article  Google Scholar 

  33. 33.

    Polettini, M.: Fact-checking Ziegler’s maximum entropy production principle beyond the linear regime and towards steady states. Entropy 15, 2570–2584 (2013). doi:10.3390/e15072570

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen. 36, 631–641 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Dewar, R.C.: Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 38, L371–L381 (2005). doi:10.1088/0305-4470/38/21/L01

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)

    ADS  Article  Google Scholar 

  37. 37.

    Ziman, J.M.: The general variational principle of transport theory. Can. J. Phys. 34, 1256–1263 (1956)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Ziegler, H.: An Introduction to Thermomechanics. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  39. 39.

    Miyamoto, H., Baker, V.R., Lorenz, R.D.: Entropy and the shaping of the landscape by water. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium thermodynamics and the production of entropy: life, earth, and beyond, pp. 135–146. Springer, Berlin (2004)

    Google Scholar 

  40. 40.

    Ito, T., Kleidon, A.: Entropy production of atmospheric heat transport. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, pp. 93–106. Springer, Berlin (2005)

    Chapter  Google Scholar 

  41. 41.

    Hill, A.: Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990)

    ADS  Article  Google Scholar 

  42. 42.

    Belkin, A., Hubler, A., Bezryadin, A.: Self-assembled wiggling nano-structures and the principle of maximum entropy production. Sci. Rep. 5, 8323 (2015). doi:10.1038/srep08323

    ADS  Article  Google Scholar 

  43. 43.

    Unrean, P., Srienc, F.: Metabolic networks evolve towards states of maximum entropy production. Metab. Eng. 13, 666–673 (2011). doi:10.1016/j.ymben.2011.08.003

    Article  Google Scholar 

  44. 44.

    Whitfield, J.: Survival of the likeliest. PLoS Biol. 5(5), 962–965 (2007). doi:10.1371/journal.pbio.0050142

    Article  Google Scholar 

  45. 45.

    Orosz, F., Oláh, J., Ovádi, J.: Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim. Biophys. Acta 1792, 1168–1174 (2009)

    Article  Google Scholar 

  46. 46.

    Sharma, P., Guptasarma, P.: ‘Super-perfect’ enzymes: structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli. Biochem. Biophys. Res. Commun. 460, 753–758 (2015)

    Article  Google Scholar 

  47. 47.

    Katebi, A.R., Jernigan, R.L.: The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics, and functionality. Protein Sci. 23, 213–228 (2014)

    Article  Google Scholar 

  48. 48.

    Wade, R.C., Gabdoulline, R.R., Lüdemann, S.K., Lounnas, V.: Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proc. Natl. Acad. Sci. U. S. A. 95, 5942–5949 (1998)

    ADS  Article  Google Scholar 

  49. 49.

    Wilhelm, T., Hoffman-Klipp, E., Heinrich, R.: An evolutionary approach to enzyme kinetics: optimization of ordered mechanisms. Bull. Math. Biol. 56, 65–106 (1994)

    Article  MATH  Google Scholar 

  50. 50.

    Klipp, E., Heinrich, R.: Competition for enzymes in metabolic pathways: implications for optimal distribution of enzyme concentrations and for the distribution of flux control. BioSystems 54, 1–14 (1999)

    Article  Google Scholar 

  51. 51.

    Johnson, W.W., Liu, S., Ji, X., Gilliland, G.L., Armstrong, R.N.: Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J. Biol. Chem. 268, 11508–11511 (1993)

    Google Scholar 

  52. 52.

    Malabalan, M.M., Amyes, T.L., Richard, J.P.: A role for flexible loops in enzyme catalysis. Curr. Opin. Struct. Biol. 20, 702–710 (2010)

    Article  Google Scholar 

  53. 53.

    Toney, M.D.: Common enzymological experiments allow free energy profile determination. Biochemistry 52, 5952–5965 (2013)

    Article  Google Scholar 

  54. 54.

    Juretić, D., Županović, P.: The free-energy transduction and entropy production in initial photosynthetic reactions. In: Kleidon, A., Lorenz, R.D. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, pp. 161–171. Springer, Berlin (2005)

  55. 55.

    Hall, A., Knowles, J.R.: The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst. Biochemistry 14, 4348–4353 (1975)

    Article  Google Scholar 

Download references


The present work was supported by the Croatian Science Foundation, project number 8481. We thank Prof. Alessandro Tossi for improvements in presentation and to anonymous reviewer for careful reading of our manuscript and insightful suggestions.

Author information



Corresponding author

Correspondence to Davor Juretić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonačić Lošić, Ž., Donđivić, T. & Juretić, D. Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production. J Biol Phys 43, 69–86 (2017).

Download citation


  • Enzyme kinetic scheme
  • Triosephosphate isomerase
  • Maximum entropy production
  • Kinetic constants