Journal of Biological Physics

, Volume 43, Issue 1, pp 45–68 | Cite as

Re-entrant cholesteric phase in DNA liquid-crystalline dispersion particles

  • Yuri M. YevdokimovEmail author
  • Sergey G. Skuridin
  • Sergey V. Semenov
  • Ljubov A. Dadinova
  • Viktor I. Salyanov
  • Efim I. Kats
Original Paper


In this research, we observe and rationalize theoretically the transition from hexagonal to cholesteric packing of double-stranded (ds) DNA in dispersion particles. The samples were obtained by phase exclusion of linear ds DNA molecules from water-salt solutions of poly(ethylene glycol)—PEG—with concentrations ranging from 120 mg ml−1 to 300 mg ml−1. In the range of PEG concentrations from 120 mg ml−1 to 220 mg ml−1 at room temperature, we find ds DNA molecule packing, typical of classical cholesterics. The corresponding parameters for dispersion particles obtained at concentrations greater than 220 mg ml−1 indicate hexagonal packing of the ds DNA molecules. However, slightly counter-intuitively, the cholesteric-like packing reappears upon the heating of dispersions with hexagonal packing of ds DNA molecules. This transition occurs when the PEG concentration is larger than 220 mg ml−1. The obtained new cholesteric structure differs from the classical cholesterics observed in the PEG concentration range 120–220 mg ml−1 (hence, the term ‘re-entrant’). Our conclusions are based on the measurements of circular dichroism spectra, X-ray scattering curves and textures of liquid-crystalline phases. We propose a qualitative (similar to the Lindemann criterion for melting of conventional crystals) explanation of this phenomenon in terms of partial melting of so-called quasinematic layers formed by the DNA molecules. The quasinematic layers change their spatial orientation as a result of the competition between the osmotic pressure of the solvent (favoring dense, unidirectional alignment of ds DNA molecules) and twist Frank orientation energy of adjacent layers (favoring cholesteric-like molecular packing).


Liquid-crystalline ds DNA dispersion particles Circular dichroism Abnormal optical activity X-ray scattering curves Textures Hexagonal packing of ds DNA molecules in dispersion particles Quasinematic layers Cholesteric packing of ds DNA molecules in dispersion particles Hexagonal → cholesteric phase transition 



The support from the Russian Science Foundation (project no. 16-15-00041) is gratefully acknowledged.

E.I. Kats's participation in the theoretical interpretation of the results was supported by the Russian Science Foundation (project no. 14-12-00475).

Our special thanks to Georgy S. Peters and Andrey Yu. Gruzinov for excellent support in the SAXS experiments at the DICSI station of the Kurchatov Synchrotron Radiation Source and Vladimir V. Volkov for support in the SAXS experiments on an AMUR-K laboratory diffractometer (Shubnikov Institute of Crystallography of the Russian Academy of Sciences).


  1. 1.
    Robinson, C.: Liquid crystalline structures in polypeptides solutions. Tetrahedron 219–234 (1961). doi: 10.1016/S0040-4020(01)92215-X
  2. 2.
    Luzzati, V., Nicolaieff, A.: The structure of nucleohistones and nucleoprotamines. J. Mol. Biol. 7, 142–163 (1963)Google Scholar
  3. 3.
    Iizuka, I.: Some new finding in the liquid crystals of sodium salt of deoxyribonucleic acid. Polym. J. 9, 173–180 (1977). doi: 10.1295/polymj.9.173
  4. 4.
    Senechal, E., Maret, G., Dransfel, K.: Long-range order of nucleic acids in aqueous solutions. Int. J. Biol. Macromol. 2, 256–262 (1980). doi: 10.1016/0141-8130(80)90085-9
  5. 5.
    Rill, R.L., Hilliard, P.R., Levy, G.C.: Spontaneous ordering of DNA. J. Biol. Chem. 258, 250–256 (1983)Google Scholar
  6. 6.
    Rill, R.L.: Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA. Proc. Natl. Acad. Sci. U. S. A. 83, 342–346 (1986)Google Scholar
  7. 7.
    Strzelecka, T.E., Rill, R.L.: Solid-state 31P NMR studies of DNA liquid crystalline phases. The isotropic to cholesteric transition. J. Am. Chem. Soc. 109, 4513–4518 (1987). doi: 10.1021/ja00249a014
  8. 8.
    Rau, D.C., Lee, B., Parsegian, V.A.: Measurement of the repulsive force between poly-electrolyte molecules in ionic solution-hydration forces between parallel DNA double helices. Proc. Natl. Acad. Sci. U. S. A. 81, 2621–2625 (1984)Google Scholar
  9. 9.
    Rau, D.C., Parsegian, V.A.: Direct measurement of the intermolecular forces between counterion- condensed DNA double helices: evidence for long range attractive hydration forces. Biophys. J. 61, 246–259 (1992). doi: 10.1016/S0006-3495(92)81831-3
  10. 10.
    Todd, B.A., Parsegian, V.A., Shirahata, A., Thomas, T.J., Rau, D.C.: Attractive forces between cation 710condensed DNA double helices. Biophys. J. 94, 4775–4782 (2008). doi: 10.1529/biophysj.107.127332
  11. 11.
    Livolant, F.: Cholesteric liquid crystalline phases given by three helical biological polymers: DNA, PBLG and xantan. A comparative analysis of their textures. J. Phys. (France) 47(9), 1605–1616 (1986). doi: 10.1051/jphys:019860047090160500
  12. 12.
    Livolant, F., Levelut, A.M., Doucet, J., Benoit, J.P.: The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature 339, 724–726 (1989). doi: 10.1038/339724a02739717
  13. 13.
    Rill, R.L., Strzelecka, T.E., Davidson, M.W., van Winkle, D.H.: Ordered phases in concentrated DNA solutions. Phys. A. 176, 87–116 (1991). doi: 10.1016/0378-4371(91)90435-F
  14. 14.
    Kassapidou, K., Jesse, W., van Dijk, J.F., van der Maarel, J.R.: Liquid crystal formation in DNA fragment solutions. Biopolymers 46(1), 31–37 (1998). doi: 10.1002/(SICI)1097-0282(199807)46:1<31::AID-BIP3>3.0.CO;2-Z
  15. 15.
    Livolant, F.: Supramolecular organization of double-stranded DNA molecules in the columnar hexagonal liquid crystalline phase. An electron microscopic analysis using freeze-fracture methods. J. Mol. Biol. 218, 165–181 (1991)Google Scholar
  16. 16.
    Leforestier, A., Livolant, F.: Cholesteric liquid crystalline DNA; a comparative analysis of cryofixation methods. Biol. Cell 71, 115–122 (1991). doi: 10.1016/0248-4900(91)90058-U
  17. 17.
    Durand, D., Doucet, J., Livolant, F.: A study of the structure of highly concentrated phases of DNA by X-ray diffraction. J. Phys. II France 2, 1769–1783 (1992)Google Scholar
  18. 18.
    Leforestier, A., Livolant, F.: Supramolecular ordering of DNA in the cholesteric liquid crystalline phase: an ultrastructural study. Biophys. J. 65, 56–72 (1993). doi: 10.1016/S0006-3495(93)81063-4
  19. 19.
    Livolant, F., Leforestier, A.: Condensed phases of DNA: structures and phase transitions. Prog. Polym. Sci. 21(6), 1115–1164 (1996). doi: 10.1016/S0079-6700(96)00016-0
  20. 20.
    Yu, Y.: M. Skuridin, S.G., Lortkipanidze, G.B, Liquid-crystalline dispersions of nucleic acids. Liq. Cryst. 12, 1–16 (1992). doi: 10.1080/02678299208029034
  21. 21.
    Yevdokimov, Yu, M., Salyanov, V.I., Semenov, S.V., Skuridin, S.G.: DNA Liquid-Crystalline Dispersions and Nanoconstructions. CRC Press (Taylor & Francis Group), Boca Raton 304 (2011)Google Scholar
  22. 22.
    Adamczyk, A.: Phase transition in freely suspended smectic droplets. Cotton-Mouton technique, architec-ture of droplets and formation nematoids. Mol. Cryst. Liq. Cryst. 170, 53–69 (1989). doi: 10.1080/00268948908047747
  23. 23.
    Chiccoli, C., Pasini, P., Semeria, F., Zannoni, C.: Computer simulations of nematic droplets with toroidal boundary conditions. Mol. Cryst. Liq. Cryst. 221, 19–28 (1992). doi: 10.1080/10587259208037516
  24. 24.
    Yu, Y.: M. Salyanov, V.I., Skuridin, S.G., Semenov, C.V., Kompanets, O.N, The CD Spectra of Double-Stranded DNA Liquid Crystalline Dispersions. Nova, New York, p 103 (2011)Google Scholar
  25. 25.
    Semenov, S.V., Yevdokimov, Yu, M.: Circular dichroism of DNA liquid-crystalline dispersion particles. Biofizika 60, 242–252 (2015). (article in Russian)Google Scholar
  26. 26.
    Keller, D., Bustamante, C.: Theory of the interaction of light with large inhomogeneous molecular aggregates. I. Absorption. J. Chem. Phys. 84, 2961 (1986). doi: 10.1063/1.450278
  27. 27.
    Keller, D., Bustamante, C.: Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 84, 2972 (1986). doi: 10.1063/1.450278
  28. 28.
    Mogilevsky, Yu, L., Dembo, A.T., Svergun, D.I., Feigin, L.A.: Small-angle X-ray difractometer with one-dimensional position-sensitive detector. Kristallogr. 29, 587–591 (1984). (article in Russian)Google Scholar
  29. 29.
    Feigin, L.A., Svergun, D.I.: Structure analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York 335 (1987)Google Scholar
  30. 30.
    Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I.: PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Appl. Cryst. 36, 1277–1282 (2003). doi: 10.1107/S0021889803012779
  31. 31.
    Shtykova, E.V., Volkov, V.V., Salyanov, V.I., Yevdokimov, Yu, M.: SAXS-data-based structural modeling of DNA-gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions. Eur. Biophys. J. 39, 1313–1322 (2010).Google Scholar
  32. 32.
    Sonin, A.S.: Introduction to the Physics of Liquid Crystals. Nauka, Moscow, pp 320 (1983) (book in Russian)Google Scholar
  33. 33.
    Yu, Y.: M. Skuridin, S.G., Salyanov, V.I, The liquid-crystalline phases of double-stranded nucleic acids in vitro and in vivo. Liq. Cryst. 3, 1443–1459 (1988). doi: 10.1080/02678298808086687
  34. 34.
    Sundaresan, N., Thomas, T., Thomas, T.J., Pillai, C.K.S.: Lithium ion induced stabilization of liquid crystalline DNA. Macromol. Biosci. 6, 250 (2006). doi: 10.1002/mabi.200500145760
  35. 35.
    Yevdokimov, Y.M., Skuridin, S.G., Salyanov, V.I., Bykov, V.A., Palumbo, M.: Structural DNA nanothechnology: liquid-crystalline approach. In: Singh, V. (ed.) Biotechnology v. 4, Applied Synthetic Biology, pp. 327–380. Studium Press LLC, Houston (2014)Google Scholar
  36. 36.
    Yevdokimov, Y.M., Salyanov, V.I., Skuridin, S.G., Semenov, S.V., Kompanets, O.N.: The CD spectra of double-stranded DNA liquid-crystalline dispersions. In: Rodgers, D.S. (ed.) Circular Dichroism: Theory and Spectroscopy, pp. 11–66. Nova, New York (2012)Google Scholar
  37. 37.
    Dyment, O.N., Kazanskii, K.S., Miroshnikov, A.M.: Glycols and Other Derivatives of Ethylene and Propylene Oxides. Moscow, Khimiya, pp 376 (1976) (book in Russian)Google Scholar
  38. 38.
    Skuridin, S.G., Damaschun, H., Damaschun, G., Yevdokimov, Y.M., Misselwitz, R.: Polymer condensed DNA: study by small-angle X-ray scattering, intermediate-angle X-ray scattering, and circular dichroism spectroscopy. Stud. Biophys. 112, 139–150 (1986)Google Scholar
  39. 39.
    Lis, J.T., Schleif, R.R.: Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Res. 2, 383–390 (1975). doi: 10.1093/nar/2.3.383
  40. 40.
    Bloomfield, V., Crothers, D.M., Tinoko, I.: Physical Chemistry of Nucleic Acids. Harper & Row Publishers, p 517 New York (1974)Google Scholar
  41. 41.
    Podgornik, R., Strey, H.H., Rau, D.C., Parsegian, V.A.: Watching molecules crowd: DNA double helices under osmotic stress. Biophys. Chem. 57, 111–121 (1995). doi: 10.1016/0301-4622(5)00058-6
  42. 42.
    Livolant, F., Maestre, M.F.: Circular dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro: cholesteric liquid-crystalline phases of DNA and single dinoflagellate nuclei. Biochemistry 27, 3056–3068 (1988). doi: 10.1021/bi00408a058
  43. 43.
    Evdokimov, Yu,M., Pyatigorskaya, T.L., Belozerskaya, N.A., Varshavsky, Ya, M., Becker, M., Zirver, D.:DNA compact form in solution. XI. Melting of the DNA compact state, formed in water-salt solutions, containing poly(ethylene glycol). Mol. Biol. 11, 507–515 (1977). article in RussianGoogle Scholar
  44. 44.
    Burlyn, E.M., Kaufman, M.R.: The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973). doi: 10.1104/pp.51.5.914
  45. 45.
    Burlyn, E.M.: Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72, 66–70 (1983). doi: 10.1104/pp.72.1.66
  46. 46.
    Salyanov, V.I., Pogrebnyak, V.G., Skuridin, S.G., Lortkipanidze, G.B., Chidzhavadze, Z.G., Toryanik, A.I., Yevdokimov, Yu, M.: On the relation between the molecular organization of the solution of poly(ethylene glycol)- water and the compactization of thedouble-stranded DNA molecules. Mol. Biol. 12, 367–375 (1978). (article in Russian)Google Scholar
  47. 47.
    Grasso, D., Gabriele-Campisi, R.: A DSC study of the liquid crystalline phase of salmon sperm DNA. Liq. Cryst. 15, 701–708 (1993). doi: 10.1080/02678299308036488
  48. 48.
    Grasso, D., Fasone, S., La Rosa, C., Salyanov, V.: A calorimetric study of the different thermal behaviour of DNA in the isotropic and liquid-crystalline states. Liq. Cryst. 9, 299–305 (1991). doi: 10.1080/02678299108035507
  49. 49.
    Grasso, D., Gabriele-Campisi, R., La Rosa, C.: Microcalorimetric measurements of thermal denaturation and renaturation processes of salmon sperm DNA in gel and liquid crystalline phases. Thermochim. Acta 199, 239–245 (1992). doi: 10.1016/0040-6031(92)80268-2
  50. 50.
    de Vries, H.: Rotary power and other optical properties of certain liquid crystals. Acta Cryst. 4, 219–226 (1951). doi: 10.1107/S0365110X51000751
  51. 51.
    Saeva, F.D., Sharpe, P.E., Olin, G.R.: Cholesteric liquid crystal induced circular dichroism (LCICD). V. Mechanistic aspects of LCICD. J. Am. Chem. Soc. 95, 7656–7659 (1973). doi: 10.1021/ja00804a019
  52. 52.
    Tinoko, I., Bustamante, C., Maestre, M.F.: The optical activity of nucleic acids and their aggregates. Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980). doi: 10.1146/
  53. 53.
    Sackmann, E., Voss, J.: Circular dichroism of helically arranged molecules in cholesteric phases. Chem. Phys. Lett. 14, 528–532 (1972). doi: 10.1016/0009-2614(72)80256-2
  54. 54.
    Norden, B.: Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 14, 157–248 (1978). doi: 10.1080/05704927808060393
  55. 55.
    Belyakov, V.A., Orlov, V.P., Semenov, S.V., Skuridin, S.G., Yevdokimov, Yu, M.: Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds. Liq. Cryst. 20, 777–784 (1996). doi: 10.1080/02678299608033172
  56. 56.
    Goldar, A., Thomson, H., Seddon, J.M.: Structure of DNA cholesteric spherulitic droplet dispersions. J. Phys. Condens. Matter 20(3), pp 9 (2008). doi: 10.1088/0953-8984/20/03/035102
  57. 57.
    Zipper, H., Brunner, H., Bernhagen, J., Vitzthum, F.: Investigation on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implication. Nucleic Acids Res. 32, e103 (2004). doi: 10.1093/nar/gnh101
  58. 58.
    Yu, G.: A., Erukhimovich, Ya, I. Shakhnovich, E.I, On the theory of ψ-condensation. Biopolymers 21, 2413–2432 (1982). doi: 10.1002/bip.360211207
  59. 59.
    Mariani, P., Saturni, L.: Measurement of intercolumnar forces between parallel guanosine four-stranded helices. Biophys. J. 70, 2867–2874 (1996). doi: 10.1016/S0006-3495(96)79856-9
  60. 60.
    Strey, H.H., Parsegian, V.A., Podgornik, R.: Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Phys. Rev. Lett. 78, 895 (1997). doi: 10.1103/PhysRevLett.78.895
  61. 61.
    Leonard, M., Hong, H., Easwar, N., Strey, H.H.: Soft matter under osmotic stress. Polymer 42, 5823–5827 (2001). doi: 10.1016/S0032-3861(0)00903-4
  62. 62.
    Ubbink, J., Odijk, T.: Polymer-induced and salt-induced toroids of hexagonal DNA. Biophys. J. 68, 54–61 (1995). doi: 10.1016/S0006-3495(95)80158-X
  63. 63.
    Stanley, C.B., Hong, H., Strey, H.H.: DNA cholesteric pitch as a function of density and ionic strength. Biophys. J. 89, 2552–2557 (2005). doi: 10.1529/biophysj.105.064550
  64. 64.
    Papkov, S.P., Kulichikhin, V.G.: The Liquid Crystalline State of Polymers. Moscow, Khimiya, pp 240 (1977) (book in Russian)Google Scholar
  65. 65.
    Gautier, A., Michel-Salamin, L., Tosi-Couture, E., McDowall, A.W., Dubochet, J.: Electron microscopy of the chromosomes of dinoflagellates in situ: confirmation of Bouligand’s liquid crystal hypothesis. J. Ultrastruct. Mol. Struct. Res. 97, 10–30 (1986). doi: 10.1016/S0889-1605(86)80003-9
  66. 66.
    Chandrasekhar, S.: Liquid Crystals, 1st edn. University Press, pp 266 Cambridge (1977)Google Scholar
  67. 67.
    Livolant, F.: Ordered phases of DNA in vivo and in vitro. Phys. A. 176, 117–137 (1991). doi: 10.1016/0378-4371(91)90436-G
  68. 68.
    Rill, R.L., Livolant, F., Aldrich, H.C., Davidson, M.W.: Electron microscopy of liquid crystalline DNA:direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98, 280–286 (1989)Google Scholar
  69. 69.
    Bouligand, Y., Norris, V.: Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83, 187–192 (2001). doi: 10.1016/S0300-9084(00)01211-6
  70. 70.
    Sartori, B.N., Senn, A., Leforestier, A., Livolant, F., Dubochet, J.: DNA in human and stallion spermatozoa forms local hexagonal packing with twist and many defects. J. Struct. Biol. 134, 76–81 (2001). doi: 10.1006/jsbi.2001.4365
  71. 71.
    Chow, M.H., Yan, K.T.H., Bennett, M.J., Wong, J.T.Y.: Birefringence and DNA condensation of liquid crystalline chromosomes. Eukaryot. Cell 9(10), 1577–1587 (2010). doi: 10.1128/EC.00026-10
  72. 72.
    de Haller, G., Kellenberger, E., Rouiller, G.: Etude au microscope electronique des plasmas contenant de l’acide deoxyribonucleique. III. Variations ultrastrucrales des chromosomes d’Amphidinium. J. Microsc. (Paris) 3(627–642) (1964)Google Scholar
  73. 73.
    Harris, A.R., Kamien, R.D., Lubensky, T.C.: Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745 (1999). doi: 10.1103/RevModPhys.71.1745
  74. 74.
    Kornyshev, A.A., Leikin, S., Malinin, S.V.: Chiral electrostatic interaction and cholesteric liquid crystals of DNA. Eur. Phys. J. 7, 83–93 (2002). doi: 10.1140/epje/i200101159
  75. 75.
    Cherstvy, A.G.: DNA cholesteric phases: the role of DNA molecular chirality and DNA-DNA electrostatic interactions. J. Phys. Chem. B. 112, 12585–12595 (2008). doi: 10.1021/jp801220p
  76. 76.
    Bellini, T., Cerbino, R., Zanchetta, G.: DNA-based soft phases. Top. Curr. Chem. 318, 225–279 (2012). doi: 10.1007/128_2011_230
  77. 77.
    Yasar, S., Podgornik, R., Valle-Orero, J., Johnson, M.R., Parsegian, V.A.: Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions. Sci. Rep. 4, 6877 (2014). doi: 10.1038/srep06877
  78. 78.
    Podgornik, R., Strey, H.H., Gawrisch, K., Rau, D.C., Rupprecht, A., Parsegian, V.A.: Bond orientational order, molecular motion, and free energy of high-density DNA mesophases. Proc. Natl. Acad. Sci. U. S. A. 93, 4261–4266 (1996). doi: 10.1073/pnas.98.1.31
  79. 79.
    Odijk, T.: Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophys. Chem. 73, 23–29 (1998). doi: 10.1016/S0301-4622(98)00115-X
  80. 80.
    Lindemann, F.A.: Über die berechnung molekularer eigenfrequenzen. Phys. Z. 14, 609–612 (1910)Google Scholar
  81. 81.
    Livolant, F., Bouligand, Y.: Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xantan). Columnar textures. J. Phys. (France) 47(10), 1813–1827 (1986). doi: 10.1051/jphys:0198600470100181300
  82. 82.
    Kondepudi, D.K., Asakura, K.: Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001). doi: 10.1021/ar010089t

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yuri M. Yevdokimov
    • 1
    Email author
  • Sergey G. Skuridin
    • 1
  • Sergey V. Semenov
    • 2
  • Ljubov A. Dadinova
    • 3
  • Viktor I. Salyanov
    • 1
  • Efim I. Kats
    • 4
  1. 1.Engelhardt Institute of Molecular Biology of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research Centre ‘Kurchatov Institute’MoscowRussia
  3. 3.Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’ of the Russian Academy of SciencesMoscowRussia
  4. 4.Landau Institute for Theoretical Physics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations