Skip to main content

Advertisement

Log in

Resonance energy transfer and competing processes in donor–acceptor of sodium zinc (II)-2,9,16,23-phthalocyanine tetracarboxylate molecule

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

An important issue that should be taken into consideration when applying the molecules in photodynamic therapy (PDT) of cancer is the occurrence of homo-resonance energy transfer process between them. We have determined the probability of energy transfer for sodium zinc (II)-2,9,16,23-phthalocyanine tetracarboxylate (ZnPc(COONa)4) molecules in aqueous NaOH solution. The homo-quenching effect of the molecule was also measured by calculating the diffusion controlled bimolecular rate constant of k q = 6.5 × 109 M−1s−1, which did not show a significant competition with the rate constant of homo-resonance energy transfer process at the applied concentration of the molecules (6 μM). The Förster radius (R0) for ZnPc(COONa)4 molecules was calculated to be 42 Å. The availability of these calculations should facilitate the potential application of ZnPc(COONa)4 molecule as an anticancer drug in PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn. Plenum Press, New York (1999)

  2. Kasha, M.: Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20, 55–71 (1963)

    Article  Google Scholar 

  3. Förster, T.: Intermolecular energy migration and fluorescence. Ann. Phys. 2, 55–75 (1948)

    Article  Google Scholar 

  4. Turro, N.J.: Modern Molecular Photochemistry. Benjamin Cummings, Menlo Park, CA (1987)

  5. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 1st edn. Plenum Press, New York (1983)

  6. Andrews, D.L., Demidov, A.A.: Resonance Energy Transfer. Wiley, Chichester (1999)

  7. Valeur, B.: Molecular fluorescence: principles and applications. Weinheim, Germany, Wiley-VCH Verlag GmbH (2011)

    Google Scholar 

  8. Wehry, E.L.: Modern Fluorescence Spectroscopy. Plenum Press, New York (1976)

  9. Clegg, R.M.: Förster resonance energy transfer–FRET what it is, why do it, and how it’s done. Lab. Tech. Biochem. Mol. Biol. 33, 1–58 (2009)

  10. Lakowicz, J.R.: Principles of Fluorescent Spectroscopy, 3rd edn. Springer, New York (2006)

  11. Wu, P., Brand, L.: Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994)

    Article  Google Scholar 

  12. Spiker, J.D., Bommer, J.C.: Chlorophyll and related pigments as photosensitizers in biology and medicine. In Chlorophyll, ed. H. Scheer. CRC Press, Florida (1991)

  13. Al-Omari, S., Alghezawi, N., Al-Noaimi, M., Al-Hamarneh, I.F., Marashdeh, M.: Observation on symmetry properties of sodium zinc(II)-2,9,16,23-phthalocyanine tetracarboxylate in water:NaOH solution. J. Fluoresc. 24, 835–9 (2014)

    Article  Google Scholar 

  14. Al-Omari, S.: Toward a molecular understanding of the photosensitizer-copper interaction for tumor destruction. Biophys. Rev. 5, 305–311 (2013)

    Article  Google Scholar 

  15. Al-Omari, S., Ali, A.: Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution. Gen. Physiol. Biophys. 28, 70–77 (2009)

    Article  Google Scholar 

  16. Strickler, S.J., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–22 (1962)

    Article  ADS  Google Scholar 

  17. Hacıvelioğlu, F., Durmus, M., Yesilot, S., Gürek, A.G., Kılıç, A., Ahsen, V.: Synthesis, electronic absorption and fluorescence spectral properties of phenoxycyclotriphosphazene-substituted phthalocyanines. Dyes Pigments 79, 14–23 (2008)

    Article  Google Scholar 

  18. Iglesias, R.S., Segala, M., Nicolau, M., Cabezo, B.: Computational study of the geometry and electronic structure of triazolephthalocyanines. J. Mater. Chem. 12, 1256–1261 (2002)

    Article  Google Scholar 

  19. Kessel, D., Dougherty, T.: Porphyrin photosensitization. Plenum Press, New York (1983)

    Book  Google Scholar 

  20. McKeown, N.B.: Phthalocyanine materials: synthesis, structure and function. Cambridge University Press, Cambridge, UK (1998)

    Google Scholar 

  21. Kadish, K.M., Smith, K.M., Guilard, R.: The Porphyrin Handbook. Academic Press, Boston (1999)

  22. ArgusLab (tm) (2004) Program package. Version 4.0, Planaria Software LLC

  23. Müller, S., Galliardt, H., Schneider, J., Barisas, B.G., Seide, T.: Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Front. Plant. Sci. 4, 413–20 (2013)

  24. Stryer, L.: Fluorescence energy transfer as a ruler. Annu. Rev. Biochem. 47, 819–846 (1978)

    Article  Google Scholar 

  25. Al-Omari, S.: Separation of static and dynamic thermodynamic parameters for the interaction between pyropheophorbide methyl ester and copper. J. Porphyrins Phthalocyanines 18, 297–304 (2014)

    Article  Google Scholar 

  26. Al-Omari, S.: Modeling the concentrations and efficiencies for the interacting species of pyropheophorbide methyl ester-copper association. Biophys. Rev. Lett. 8, 73–87 (2013)

    Article  Google Scholar 

  27. Bonacucina, G., Cespi, M., Mencarelli, G., Giorgioni, G., Palmieri, G.F.: Thermosensitive self-assembling block copolymers as drug delivery systems. Polymers 3, 779–811 (2011)

    Article  Google Scholar 

  28. Hink, M.A., Bisseling, T., Visser, A.J.: Imaging protein–protein interactions in living plant cells. Plant Mol. Biol. 50, 871–883 (2002)

    Article  Google Scholar 

  29. Heyduk, T., Heyduk, E.: Molecular beacons for detecting DNA binding proteins. Nat. Biotechnol. 20, 171–6 (2002)

    Article  Google Scholar 

  30. Kavarnos, G.J.: Fundamentals of Photoinduced Electron Transfer. VCH Publishers Inc, USA. (1993)

  31. Simpson, W.T., Peterson, D.L.: Coupling strength for resonance force transfer of electronic energy in Van der Waals solids. J. Chem. Phys. 26, 588–593 (1957)

    Article  ADS  Google Scholar 

  32. Al-Omari, S.: Kinetic model for the molecular system of zinc(II)-2,9,16,23-phthalocyanine tetracarboxylate. J. Nonlinear. Optic. Phys. Mat. 24, 1550005 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Al-Omari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Omari, S. Resonance energy transfer and competing processes in donor–acceptor of sodium zinc (II)-2,9,16,23-phthalocyanine tetracarboxylate molecule. J Biol Phys 42, 373–382 (2016). https://doi.org/10.1007/s10867-016-9412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9412-9

Keywords

Navigation