Skip to main content
Log in

Two-dimensional motion of Brownian swimmers in linear flows

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The motion of viruses and bacteria and even synthetic microswimmers can be affected by thermal fluctuations and by external flows. In this work, we study the effect of linear external flows and thermal fluctuations on the diffusion of those swimmers modeled as spherical active (self-propelled) particles moving in two dimensions. General formulae for their mean-square displacement under a general linear flow are presented. We also provide, at short and long times, explicit expressions for the mean-square displacement of a swimmer immersed in three canonical flows, namely, solid-body rotation, shear and extensional flows. These expressions can now be used to estimate the effect of external flows on the displacement of Brownian microswimmers. Finally, our theoretical results are validated by using Brownian dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Itto, Y.: Heterogeneous anomalous diffusion of a virus in the cytoplasm of a living cell. J. Biol. Phys. 38, 673–679 (2012)

    Article  Google Scholar 

  2. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

  3. Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R., Golestanian, R.: Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  4. Ishikawa, T., Pedley, T.: Diffusion of swimming model micro-organisms in a semi-dilute suspension. J. Fluid Mech. 588, 437–462 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Lobaskin, V., Lobaskin, D., Kulic, I.: Brownian dynamics of a microswimmer. Eur. Phys. J. Special Topics 157, 149–156 (2008)

    Article  ADS  Google Scholar 

  6. Lovely, P.S., Dahlquist, F.W.: Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50, 477–496 (1975)

    Article  Google Scholar 

  7. Pedley, T.J., Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313–358 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Romanczuk, P., Bar, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active Brownian particles. Eur. Phys. J. Special Topics 202, 1–162 (2012)

    Article  ADS  Google Scholar 

  9. Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., Nelson, B.J.: How should microrobots swim?. Int. J. Robot. Res. 28, 1434–1447 (2009)

    Article  Google Scholar 

  10. Kosa, G., Jakab, P., Szekely, G., Hata, N.: MRI driven magnetic microswimmers. Biomed. Microdevices 14, 165–178 (2012)

    Article  Google Scholar 

  11. Wang, J., Gao, W.: Nano/microscale motors: Biomedical opportunities and challenges. ACS Nano 6, 5745–5751 (2012)

    Article  Google Scholar 

  12. Mallouk, T.E., Sen, A.: Powering nanorobots. Sci. Am. 300, 72–77 (2009)

    Article  ADS  Google Scholar 

  13. Mirkovic, T., Zacharia, N.S., Scholes, G.D., Ozin, G.A.: Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano 4, 1782–1789 (2010)

    Article  Google Scholar 

  14. Paxton, W.F., Sundararajan, S., Mallouk, T.E., Sen, A.: Chemical Locomotion, vol. 45, pp 5420–5429 (2006)

  15. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977)

    Article  ADS  Google Scholar 

  16. Polin, M., Tuval, I., Drescher, K., Gollub, J.P., Goldstein, R.E.: Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009)

    Article  ADS  Google Scholar 

  17. Guasto, J.S., Rusconi, R., Stocker, R.: Fluid mechanics of planktonic microorganisms. Ann. Rev. Fluid Mech. 44, 373–400 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Berg, H.C.: E. coli in Motion. Springer, New York (2004)

  19. San-Miguel, M., Sancho, J.M.: Brownian motion in shear flow. Physica A 99, 357–364 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  20. Takikawa, Y., Orihara, H.: Persistence of Brownian motion in a shear flow. Phys. Rev. E 88, 062111 (2013)

    Article  ADS  Google Scholar 

  21. Foister, R.T., van de Ven, T.G.M.: Diffusion of Brownian particles in shear flows. J. Fluid Mech. 96, 105–132 (1980)

    Article  ADS  MATH  Google Scholar 

  22. Childress, S., Levandowsky, S., Spiegel, A.: Pattern formation in a suspension of swimming microorganisms: equations and stability theory. J. Fluid Mech. 69, 591–613 (1975)

    Article  ADS  MATH  Google Scholar 

  23. Kessler, J.O.: Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191–205 (1986)

    Article  ADS  Google Scholar 

  24. Lauga, E., Powers, T.: The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72(096), 601 (2009)

    MathSciNet  Google Scholar 

  25. Lee, K.J.B., Kim, C., Chung, M.H.: Walking motion of an overdamped active particle in a ratchet potential. J. Biol. Phys. 38, 305–316 (2012)

    Article  Google Scholar 

  26. Park, P., Lee, K.J.B.: A modified active Brownian dynamics model using asymmetric energy conversion and its application to the molecular motor system. J. Biol. Phys. 39, 439–452 (2013)

    Article  Google Scholar 

  27. Pedley, T.J., Kessler, J.O.: The orientation of spheroidal microorganisms swimming in a flow field. Proc. R. Soc. Lond. B 231, 47–70 (1987)

    Article  ADS  Google Scholar 

  28. Sandoval, M., Dagdug, L.: Effective diffusion of confined active Brownian swimmers. Phys. Rev. E 90, 062711 (2014)

    Article  ADS  Google Scholar 

  29. van Teeffelen, S., Lowen, H.: Dynamics of a Brownian circle swimmer. Phys. Rev. E 78, 020101 (2008)

    Article  ADS  Google Scholar 

  30. ten Hagen, B., van Teeffelen, S., Lowen, H.: Brownian motion of a self-propelled particle. J. Phys. Condens. Matter. 23, 194119 (2011)

    Article  ADS  Google Scholar 

  31. Jones, M.S., Baron, L.L., Pedley, T.J.: Biflagellate gyrotaxis in a shear flow. J. Fluid Mech. 281, 137–158 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bearon, R.N., Pedley, T.J.: Modelling run-and-tumble chemotaxis in a shear flow. Bull. Math. Biol. 62, 775–791 (2000)

    Article  MATH  Google Scholar 

  33. Frankel, A.E., Khair, A.S.: Dynamics of a self-diffusiophoretic particle in shear flow. Phys. Rev. E 90, 013,030 (2014)

    Article  Google Scholar 

  34. Locsei, J.T., Pedley, T.J.: Run and tumble chemotaxis in a shear flow: The effect of temporal comparisons, persistence, rotational diffusion, and cell shape. Bull. Math. Biol. 71, 1089–1116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. ten Hagen, B., Wittkowski, R., Lowen, H.: Brownian dynamics of a self-propelled particle in shear flow. Phys. Rev. E 84, 031105 (2011)

    Article  ADS  Google Scholar 

  36. Sandoval, M., Marath, N.K., Subramanian, G., Lauga, E.: Stochastic dynamics of active swimmers in linear flows. J. Fluid Mech. 742, 50–70 (2014)

    Article  ADS  MATH  Google Scholar 

  37. Ebbens, S., Jones, R.A.L., Ryan, A., Golestanian, R., Howse, J.R.: Self-assembled autonomous runners and tumblers. Phys. Rev. E 82, 015304 (2010)

    Article  ADS  Google Scholar 

  38. Doi, M., Edwards, S.: The Theory of Polymer Dynamics. Clarendon Press, Oxford (1999)

  39. Goldstein, H.: Classical Mechanics. Addison-Wesley, USA (1950)

  40. Berne, B.J., Pecora, R.: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover (2000)

  41. Batchelor, G.: Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech. 98, 609–623 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lazier, J.R.N., Mann, K.H.: Turbulence and the diffusive layers around small organism. Deep-Sea Res. 36, 1721–1733 (1989)

    Article  ADS  Google Scholar 

  43. Luchsinger, R.H., Bergersen, B., Mitchell, J.G.: Bacterial swimming strategies and turbulence. Biophys. J. 77, 2377–2386 (1999)

    Article  Google Scholar 

  44. Pedley, T.J.: The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, Cambridge (1980)

  45. Lipowsky, H.H., Kovalcheck, Zweigach, B.W.: The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circulat. Res. 43, 738–749 (1978)

    Article  Google Scholar 

  46. Taktikos, J., Stark, H., Zaburdaev, V.: How the motility pattern of bacteria affects their dispersal and chemotaxis. PloS ONE 8, e81936 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M. Sandoval thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work. M.S. also thanks the support received from T. de la Selva, R. M. Velasco and J. I. Jimenez. A. Jimenez thanks PROMEP for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Sandoval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandoval, M., Jimenez, A. Two-dimensional motion of Brownian swimmers in linear flows. J Biol Phys 42, 199–212 (2016). https://doi.org/10.1007/s10867-015-9401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9401-4

Keywords

Navigation