Skip to main content
Log in

Modeling of toxin–antibody interaction and toxin transport toward the endoplasmic reticulum

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A model for toxin–antibody interaction and toxin trafficking towards the endoplasmic-reticulum is presented. Antibody and toxin (ricin) initially are delivered outside the cell. The model involves: the pinocytotic (cellular drinking) and receptor-mediated toxin internalization modes from the extracellular into the intracellular domain, its exocytotic excretion from the cytosol back to the extracellular medium, the intact toxin retrograde transport to the endoplasmic reticulum, the anterograde toxin movement outward from the cell across the plasma membrane, the lysosomal toxin degradation, and the toxin clearance (removal from the system) flux. The model consists of a set of coupled PDEs. Using an averaging procedure, the model is reduced to a system of coupled ODEs. Both PDEs and ODEs systems are solved numerically. Numerical results are illustrated by figures and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhaskaran, M., Didier, P.J., Sivasubramani, S.K., Doyle, L.A., Holley, J., Roy, C.J.: Pathology of lethal and sublethal doses of aerosolized ricin in rhesus macaques. Toxicol. Pathol. 42, 573–581 (2014)

    Article  Google Scholar 

  2. Wu, F., Fan, S., Martiniuk, F., Pincus, S., Mller, S., Kohler, H., Tchou-Wong, K.-M.: Protective effects of anti-ricin A-chain antibodies delivered intracellularly against ricin-induced cytotoxicity. World J. Biol. Chem. 1, 188–195 (2010)

    Article  Google Scholar 

  3. May, K.L., Yan, Q.Y., Tumer, N.E.: Targeting ricin to the ribosome. Toxicon 69, 143–151 (2013)

    Article  Google Scholar 

  4. Prigent, J., Panigai, L., Lamourette, P., Sauvaire, D., Devilliers, K., Plaisance, M., Volland, H., Crminon, C., Simon, S.: Neutralising antibodies against ricin toxin. PLoS ONE 6, e20166 (2011)

    Article  ADS  Google Scholar 

  5. Poli, M.A., Rivera, V.R., Pitt, M.L., Vogel, P.: Aerosolized specific antibody protects mice from lung injury associated with aerosolized ricin exposure. Toxicon 34, 1037–1044 (1996)

    Article  Google Scholar 

  6. Skakauskas, V., Katauskis, P., Skvortsov, A.: A reaction-diffusion model of the receptor-toxin-antibody interaction. Theor. Biol. Med. Model. 8, 32 (2011)

    Article  Google Scholar 

  7. Skakauskas, V., Katauskis, P., Skvortsov, A., Gray, P.: Modelling effects of internalized antibody: a simple comparative study. Theor. Biol. Med. Model. 11, 11 (2014)

    Article  Google Scholar 

  8. Skvortsov, A., Gray, P.: A simple mathematical model for assessment of anti-toxin antibodies. BioMed Res. Int. 2013, 230906 (2013)

    Article  Google Scholar 

  9. Skakauskas, V., Katauskis, P., Skvortsov, A., Gray, P.: Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model. Math. Biosci. 261, 83–90 (2015)

    Article  MathSciNet  Google Scholar 

  10. Reisler, B.B., Smith, L.A.: The need for continued development of ricin countermeasures. Adv. Prev. Medicine 2012, 149737 (2012)

    Article  Google Scholar 

  11. Pelat, T., Avril, A., Chahboun, S., Mathieu, J., Thullier, P.: Development of anti-toxins antibodies for biodefense. J. Bioterr. Biodef. S7, 1–5 (2011)

    Google Scholar 

  12. Song, K., Mize, R.R., Marrero, L., Corti, M., Kirk, J.M., Pincus, S.H.: Antibody to ricin a chain hinders intracellular routing of toxin and protects cells even after toxin has been internalized. PLoS ONE 8(4), e62417 (2013)

    Article  ADS  Google Scholar 

  13. Spooner, R.A., Smith, D.C., Easton, A.J., Roberts, L.M., Lord, J.M.: Retrograde transport pathways utilised by viruses and protein toxins. Virology J. 3, 26 (2006)

    Article  Google Scholar 

  14. Weshe, J., Rapak, A., Olsnes, S. J. Biol. Chem. 274, 34443–34449 (1999)

    Article  Google Scholar 

  15. Spoopner, R.A., Watson, P.D., Marsden, C.J., Smith, D.C., More, K.A.H., Cook, J.P., Lord, J.M., Oberts, L.M.: Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 383, 285–293 (2004)

    Article  Google Scholar 

  16. Smith, D.A., Simmons, R.M.: Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)

    Article  ADS  Google Scholar 

  17. Friedman, A., Cracium, G.: A model of intracellular transport of particles in an axon. J. Math. Biol. 51, 217–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sandvig, K., van Deurs, B.: Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529, 49–53 (2002)

    Article  Google Scholar 

  19. Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)

    Article  Google Scholar 

  20. Vale, R.D., Schnapp, B. J., Reese, T.S., Sheetz, M.P.: Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40, 449–454 (1985)

    Article  Google Scholar 

  21. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. third ed., Garland Publishing, New York (1994)

  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. third ed., Cambridge University Press, Cambridge (2007)

  23. Shampine, L.F., Gladwell, I., Thompson, S., Beardah, C.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  24. Truskey, G.A., Yuan, F., Katz, D.F.: Transport Phenomena in Biological Systems, second ed., Pearson Prentice Hall Bioengineering (2009)

  25. McGuinness, C.R., Mantis, N.J.: Characterization of a novel high-affinity monoclonal immunoglobulin G antibody against the ricin B subunit. Infect. Immun. 74, 3463–3470 (2006)

    Article  Google Scholar 

  26. Lord, J.M., Spooner, R.A.: Ricin trafficking in plant and mammalian cells. Toxins 3, 787–801 (2011)

    Article  Google Scholar 

  27. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    Book  MATH  Google Scholar 

  28. van Deurs, B., Sandvig, K., Peterson, O.W., Olsnes, S., Simons, K., Griffiths, G.: Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 106, 253–267 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladas Skakauskas.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Modeling of toxin–antibody interaction and toxin transport toward the endoplasmic reticulum. J Biol Phys 42, 83–97 (2016). https://doi.org/10.1007/s10867-015-9394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9394-z

Keywords

Navigation