Advertisement

Journal of Biological Physics

, Volume 42, Issue 1, pp 1–8 | Cite as

Radiofrequency and microwave interactions between biomolecular systems

  • Ondřej Kučera
  • Michal Cifra
Perspective

Abstract

The knowledge of mechanisms underlying interactions between biological systems, be they biomacromolecules or living cells, is crucial for understanding physiology, as well as for possible prevention, diagnostics and therapy of pathological states. Apart from known chemical and direct contact electrical signaling pathways, electromagnetic phenomena were proposed by some authors to mediate non-chemical interactions on both intracellular and intercellular levels. Here, we discuss perspectives in the research of nanoscale electromagnetic interactions between biosystems on radiofrequency and microwave wavelengths. Based on our analysis, the main perspectives are in (i) the micro and nanoscale characterization of both passive and active radiofrequency properties of biomacromolecules and cells, (ii) experimental determination of viscous damping of biomacromolecule structural vibrations and (iii) detailed analysis of energetic circumstances of electromagnetic interactions between oscillating polar biomacromolecules. Current cutting-edge nanotechnology and computational techniques start to enable such studies so we can expect new interesting insights into electromagnetic aspects of molecular biophysics of cell signaling.

Keywords

Bioelectrodynamics Biomolecules Cell signaling Electromagnetic field Radiofrequency Microwaves 

Notes

Acknowledgements

Authors were supported from institutional funding of the Institute of Photonics and Electronics, The Czech Academy of Sciences and by the Czech Science Foundation, grant no. 15-17102S.

References

  1. 1.
    Hille, B.: Ion Channels of Excitable Membranes. Sinauer Sunderland, MA (2001)Google Scholar
  2. 2.
    Cifra, M., Pospíšil, P.: Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B Biol. 139, 2–10 (2014)Google Scholar
  3. 3.
    Roda, A.: Chemiluminescence and Bioluminescence: Past, Present and Future. Royal Society of Chemistry (2010)Google Scholar
  4. 4.
    Reguera, G.: When microbial conversations get physical. Trends Microbiol. 19 (3), 105–113 (2011)CrossRefGoogle Scholar
  5. 5.
    Pokorný, J., Fiala, J.: Condensed energy and interaction energy in Frohlicḧ systems. Neural Network World 94(3), 299–313 (1994)Google Scholar
  6. 6.
    Pokorný, J., Wu, T.-M.: Biophysical Aspects of Coherence and Biological Order. Academia, Praha, Czech Republic. Springer, Berlin - Heidelberg (1998)Google Scholar
  7. 7.
    Golant, M. B.: O probleme rezonanchnogo deistva kogerentnykh elektromagnitnykh izluchenii millimetrovogo diapazona voln na zhivie organizmy. Biofizika 34(2), 339–348 (1989)Google Scholar
  8. 8.
    Belyaev, I. Y., Alipov, Y. D., Shcheglov, V. S., Polunin, V. A., Aizenberg, O. A.: Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity. Electro. Magnetobiol. 13(1), 53–66 (1994)CrossRefGoogle Scholar
  9. 9.
    Pooley, D. T.: Bacterial bioluminescence, bioelectromagnetics and function. Photochem. Photobiol. 87(2), 324–328 (2011)CrossRefGoogle Scholar
  10. 10.
    Tuszyński, J., Brown, J., Crawford, E., Carpenter, E., Nip, M., Dixon, J., Sataric, M.: Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 41(10), 1055–1070 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cifra, M., Pokorný, J., Havelka, D., Kučera, O.: Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems 100(2), 122–131 (2010)CrossRefGoogle Scholar
  12. 12.
    Kučera, O., Havelka, D.: Mechano-electrical vibrations of microtubules–link to subcellular morphology. BioSystems 109, 356–366 (2012)Google Scholar
  13. 13.
    Havelka, D., Cifra, M., Kučera, O.: Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule. Appl. Phys. Lett. 104(24), 243702 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Felder, C. E., Prilusky, J., Silman, I., Sussman, J. L.: A server and database for dipole moments of proteins. Nucleic Acids Res. 35(suppl 2), W512–W521 (2007)CrossRefGoogle Scholar
  15. 15.
    Falconer, R. J., Markelz, A. G.: Terahertz spectroscopic analysis of peptides and proteins. Journal of Infrared, Millimeter, and Terahertz Waves 33(10), 973–988 (2012)CrossRefGoogle Scholar
  16. 16.
    Wang, C., Ru, C., Mioduchowski, A.: Vibration of microtubules as orthotropic elastic shells. Physica E: Low-dimensional Systems and Nanostructures 35(1), 48–56 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Deriu, M. A., Soncini, M., Orsi, M., Patel, M., Essex, J. W., Montevecchi, F. M., Redaelli, A.: Anisotropic elastic network modeling of entire microtubules. Biophys. J. 99(7), 2190–2199 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Rousseau, E., Siria, A., Jourdan, G., Volz, S., Comin, F., Chevrier, J., Greffet, J.-J.: Radiative heat transfer at the nanoscale. Nat. Photonics 3(9), 514–517 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Clegg, R. M.: Förster resonance energy transfer—FRET: what is it, why do it, and how its done. Laboratory Techniques in Biochemistry and Molecular Biology (FRET and FLIM Techniques), vol. 33, pp. 1–57 (2009)Google Scholar
  20. 20.
    Andrews, D. L.: Mechanistic principles and applications of resonance energy transfer. Can. J. Chem. 86(9), 855–870 (2008)Google Scholar
  21. 21.
    Yoon, I.-J.: Realizing Efficient Wireless Power Transfer in the Near-Field Region Using Electrically Small Antennas. PhD thesis. University of Texas (2012)Google Scholar
  22. 22.
    Gupta, S. K., Lalwani, S., Prakash, Y., Elsharawy, E., Schwiebert, L.: Towards a propagation model for wireless biomedical applications. In: IEEE International Conference on Communications. ICC’03, vol. 3, pp. 1993–1997. IEEE (2003)Google Scholar
  23. 23.
    Girard, C., Joachim, C., Gauthier, S.: The physics of the near-field. Rep. Prog. Phys. 63(6), 893–938 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Preto, J., Floriani, E., Nardecchia, I., Ferrier, P., Pettini, M.: Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis. Phys. Rev. E 85(4), 041904 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Nardecchia, I., Spinelli, L., Preto, J., Gori, M., Floriani, E., Jaeger, S., Ferrier, P., Pettini, M.: Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: Numerical study. Phys. Rev. E 90, 022703 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Adair, R. K.: Vibrational resonances in biological systems at microwave frequencies. Biophys. J. 82(3), 1147–1152 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Adair, R.: Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24(1), 39–48 (2003)CrossRefGoogle Scholar
  28. 28.
    Foster, K. R., Baish, J. W.: Viscous damping of vibrations in microtubules. J. Biol. Phys. 26(4), 255–260 (2000)CrossRefGoogle Scholar
  29. 29.
    Xie, A., van der Meer, A., Austin, R.: Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 88(1), 018102 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Gruia, F., Kubo, M., Ye, X., Champion, P.: Investigations of vibrational coherence in the low-frequency region of ferric heme proteins. Biophys. J. 94(6), 2252–2268 (2008)CrossRefGoogle Scholar
  31. 31.
    Liu, T., Chen, H., Yeh, S., Wu, C., Wang, C., Luo, T., Chen, Y., Liu, S., Sun, C.: Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations. Appl. Phys. Lett. 95(17), 173702 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Turton, D. A., Senn, H. M., Harwood, T., Lapthorn, A. J., Ellis, E. M., Wynne, K.: Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun. 5, 3999 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Pokorný, J.: Viscous effects on polar vibrations in microtubules. Electromagn. Biol. Med. 22(1), 15–29 (2003)CrossRefGoogle Scholar
  34. 34.
    Mitrofanov, V., Romanovsky, Y., Netrebko, A.: On the damping of the fluctuations of atomic groups in water environment. Fluctuation Noise Lett. 6(2), L133–L145 (2006)CrossRefGoogle Scholar
  35. 35.
    Romanovsky, Y., Netrebko, A., Chikishev, A.: Are the subglobular oscillations of protein molecules in water overdamped?. Laser Phys. 13(6), 827–838 (2003)Google Scholar
  36. 36.
    Brandt, N., Chikishev, A. Y., Dolgovskii, V., Kargovskii, A., Lebedenko, S.: Low-frequency vibrational motions in proteins: physical mechanisms and effect on functioning. Eur. Phys. J. B–Condensed Matter and Complex Systems 65(3), 419–424 (2008)CrossRefGoogle Scholar
  37. 37.
    Hameroff, S., Lindsay, S., Bruchmann, T., Scott, A.: Acoustic modes of microtubules. Biophys. J. 49(2 Pt 2), 58a (1986). Thirtieth Annual Meeting 9-13 February 1986 Brooks Hall/Convention Center, San Francisco, California Monday, February 10, 1986, 1:30 - 5:00 p.m., Polk Hall, Part 1Google Scholar
  38. 38.
    Gabel, F., Bicout, D., Lehnert, U., Tehei, M., Weik, M., Zaccai, G.: Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 35(4), 327–367 (2002)CrossRefGoogle Scholar
  39. 39.
    Wheaton, S., Gelfand, R. M., Gordon, R.: Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nat. Photonics 9(1), 68–72 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Kotnala, A., Wheaton, S., Gordon, R.: Playing the notes of dna with light: extremely high frequency nanomechanical oscillations. Nanoscale 7, 2295–2300 (2015)Google Scholar
  41. 41.
    Caplow, M., Ruhlen, R. L., Shanks, J.: The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 127, 779–788 (1994)CrossRefGoogle Scholar
  42. 42.
    Caplow, M., Shanks, J.: Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol. Biol. Cell 7(4), 663–675 (1996)CrossRefGoogle Scholar
  43. 43.
    Pokorný, J.: Excitation of vibration in microtubules in living cells. Bioelectrochemistry 63(1-2), 321–326 (2004)CrossRefGoogle Scholar
  44. 44.
    Pokorný, J., Pokorný, J., Kobilková, J.: Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. 5(12), 1439–1446 (2013)CrossRefGoogle Scholar
  45. 45.
    Turro, N. J., Ramamurthy, V., Scaiano, J. C.: Modern Molecular Photochemistry of Organic Molecules. University Science Books (2010)Google Scholar
  46. 46.
    Javaheri, H., Barbiellini, B., Noubir, G.: Energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields. Nanoscale Res. Lett. 7 (1), 1–7 (2012)CrossRefGoogle Scholar
  47. 47.
    Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R., Wiltschko, W.: Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429(6988), 177–180 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Usselman, R. J., Hill, I., Singel, D. J., Martino, C. F.: Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS ONE 9(3), e93065 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Gauger, E. M., Rieper, E., Morton, J. J., Benjamin, S. C., Vedral, V.: Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett. 106(4), 040503 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Timmel, C., Till, U., Brocklehurst, B., McLauchlan, K., Hore, P.: Effects of weak magnetic fields on free radical recombination reactions. Mol. Phys. 95 (1), 71–89 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    Cifra, M., Farhadi, A., Fields, J. Z.: Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105, 223–246 (2011)CrossRefGoogle Scholar
  52. 52.
    Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Kučera, O., Cifra, M., Pokorný, J.: Technical aspects of measurement of cellular electromagnetic activity. Eur. Biophys. J. 39(10), 1465–1470 (2010)CrossRefGoogle Scholar
  54. 54.
    Johnson, M. D., Völker, J., Moeller, H. V., Laws, E., Breslauer, K. J., Falkowski, P. G.: Universal constant for heat production in protists. Proc. U.S.A. Natl. Acad. Sci. 106(16), 6696–6699 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Van Wijk, R., Souren, J., Schamhart, D., Van Miltenburg, J.: Comparative studies of the heat production of different rat hepatoma cells in culture. Cancer Res. 44(2), 671–673 (1984)Google Scholar
  56. 56.
    Wagner, B. A., Venkataraman, S., Buettner, G. R.: The rate of oxygen utilization by cells. Free Radic. Biol. Med. 51(3), 700–712 (2011)CrossRefGoogle Scholar
  57. 57.
    Fröhlich, H.: Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Photonics and ElectronicsThe Czech Academy of SciencesPragueCzechia

Personalised recommendations