Journal of Biological Physics

, Volume 41, Issue 1, pp 9–22 | Cite as

Prediction of matrix-to-cell stress transfer in heart valve tissues

  • Siyao Huang
  • Hsiao-Ying Shadow HuangEmail author
Original Paper


Non-linear and anisotropic heart valve leaflet tissue mechanics manifest principally from the stratification, orientation, and inhomogeneity of their collagenous microstructures. Disturbance of the native collagen fiber network has clear consequences for valve and leaflet tissue mechanics and presumably, by virtue of their intimate embedment, on the valvular interstitial cell stress–strain state and concomitant phenotype. In the current study, a set of virtual biaxial stretch experiments were conducted on porcine pulmonary valve leaflet tissue photomicrographs via an image-based finite element approach. Stress distribution evolution during diastolic valve closure was predicted at both the tissue and cellular levels. Orthotropic material properties consistent with distinct stages of diastolic loading were applied. Virtual experiments predicted tissue- and cellular-level stress fields, providing insight into how matrix-to-cell stress transfer may be influenced by the inhomogeneous collagen fiber architecture, tissue anisotropic material properties, and the cellular distribution within the leaflet tissue. To the best of the authors’ knowledge, this is the first study reporting on the evolution of stress fields at both the tissue and cellular levels in valvular tissue and thus contributes toward refining our collective understanding of valvular tissue micromechanics while providing a computational tool enabling the further study of valvular cell–matrix interactions.


Finite element method Heart valve tissues Biomechanics Stress analysis Collagen fiber orientation Tissue engineering 



The studies presented herein were supported by start-up funds provided by the North Carolina State University Department of Mechanical and Aerospace Engineering.

Competing interests

None declared.


The studies presented herein were supported by start-up funds provided by the North Carolina State University Department of Mechanical and Aerospace Engineering.

Ethical approval

Not required.


  1. 1.
    American Heart Association.: Heart Disease and Stroke Statistics. (2010)Google Scholar
  2. 2.
    NIH. Heart and Vascular Diseases. National Heart Lung and Blood Institute, (2010)Google Scholar
  3. 3.
    El Khoury, G., Vanoverschelde, J.L., Glineur, D., Pierard, F., Verhelst, R.R., Rubay, J., Funken, J.C., Watremez, C., Astarci, P., Lacroix, V., Poncelet, A., Noirhomme, P.: Repair of bicuspid aortic valves in patients with aortic regurgitation. Circulation 114, I610–I616 (2006)CrossRefGoogle Scholar
  4. 4.
    El Oakley, R., Kleine, P., Bach, D.S.: Choice of prosthetic heart valve in today's practice. Circulation 117(2), 253–256 (2008)CrossRefGoogle Scholar
  5. 5.
    Mendelson, K., Schoen, F.J.: Heart valve tissue engineering: Concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34(12), 1799–1819 (2006)CrossRefGoogle Scholar
  6. 6.
    Christie, G.W., Barratt-Boyes, B.G.: Mechanical properties of porcine pulmonary valve leaflets—how do they differ from aortic leaflets. Ann. Thorac. Surg. 60(2), S195–S199 (1995)CrossRefGoogle Scholar
  7. 7.
    Billiar, K.L., Sacks, M.S.: Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp - Part I: Experimental results. J. Biomech. Eng.-Trans. ASME 122(1), 23–30 (2000)CrossRefGoogle Scholar
  8. 8.
    Stradins, P., Lacis, R., Ozolanta, I., Purina, B., Ose, V., Feldmane, L., Kasyanov, V.: Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardio-thoracic Surg.: Eur. J. Cardio-Thoracic Surg. 26(3), 634–639 (2004)CrossRefGoogle Scholar
  9. 9.
    Sacks, M.S., Schoen, F.J., Mayer, J.E.: Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11, 289–313 (2009)CrossRefGoogle Scholar
  10. 10.
    Sacks, M.S., Smith, D.B., Hiester, E.D.: The aortic valve microstructure: Effects of transvalvular pressure. J. Biomed. Mater. Res. 41(1), 131–141 (1998)CrossRefGoogle Scholar
  11. 11.
    Joyce, E.M., Liao, J., Schoen, F.J., Mayer Jr., J.E., Sacks, M.S.: Functional collagen fiber architecture of the pulmonary heart valve cusp RID F-3703-2011. Ann. Thorac. Surg. 87(4), 1240–1249 (2009)CrossRefGoogle Scholar
  12. 12.
    Cox, M.A.J., Kortsmit, J., Driessen, N., Bouten, C.V.C., Baaijens, F.P.T.: Tissue-engineered heart valves develop native-like collagen fiber architecture. Tissue Eng. Part a 16(5), 1527–1537 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, H.-Y.S., Liao, J., Sacks, M.S.: In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129, 1–10 (2007)Google Scholar
  14. 14.
    Huang, H.-Y.S., Balhouse, B.N., Huang, S.: Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering. Proc. Inst. Mech. Eng. H J. Eng. Med. 226(11), 868–876 (2012)CrossRefGoogle Scholar
  15. 15.
    Li, J., Luo, X.Y., Kuang, Z.B.: A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34(10), 1279–1289 (2001)CrossRefGoogle Scholar
  16. 16.
    Luo, X.Y., Li, W.G., Li, J.: Geometrical stress-reducing factors in the anisotropic porcine heart valves. J. Biomech. Eng.-Trans. ASME 125(5), 735–744 (2003)CrossRefGoogle Scholar
  17. 17.
    Mohammadi, H., Bahramian, F., Wan, W.: Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med. Eng. Phys. 31(9), 1110–1117 (2009)CrossRefGoogle Scholar
  18. 18.
    Koch, T.M., Reddy, B.D., Zilla, P., Franz, T.: Aortic valve leaflet mechanical properties facilitate diastolic valve function RID C-3386-2009. Comput. Methods Biomech. Biomed. Eng. 13(2), 225–234 (2010)CrossRefGoogle Scholar
  19. 19.
    Balachandran, K., Konduri, S., Sucosky, P., Jo, H., Yoganathan, A.P.: An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34(11), 1655–1665 (2006)CrossRefGoogle Scholar
  20. 20.
    Merryman, W.D., Lukoff, H.D., Long, R.A., Engelmayr Jr., G.C., Hopkins, R.A., Sacks, M.S.: Synergistic effects of cyclic tension and transforming growth factor-β1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16(5), 268–276 (2007)CrossRefGoogle Scholar
  21. 21.
    Metzler, S.A., Digesu, C.S., Howard, J.I., Filip To, S.D., Warnock, J.N.: Live en face imaging of aortic valve leaflets under mechanical stress. Biomech. Model. Mechanobiol. 11(3–4), 355–361 (2012)CrossRefGoogle Scholar
  22. 22.
    Weston, M.W., Yoganathan, A.P.: Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29(9), 752–763 (2001)CrossRefGoogle Scholar
  23. 23.
    Hutcheson, J.D., Venkataraman, R., Baudenbacher, F.J., Merryman, W.D.: Intracellular Ca(2+) accumulation is strain-dependent and correlates with apoptosis in aortic valve fibroblasts. J. Biomech. 45(5), 888–894 (2012)CrossRefGoogle Scholar
  24. 24.
    Fisher, C.I., Chen, J., Merryman, W.D.: Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech. Model. Mechanobiol. 12(1), 5–17 (2013)CrossRefGoogle Scholar
  25. 25.
    Quinlan, A.M., Billiar, K.L.: Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J. Biomed. Mater. Res. A 100(9), 2474–2482 (2012)Google Scholar
  26. 26.
    Gould, R.A., Chin, K., Santisakultarm, T.P., Dropkin, A., Richards, J.M., Schaffer, C.B., Butcher, J.T.: Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater. 8(5), 1710–1719 (2012)CrossRefGoogle Scholar
  27. 27.
    Waxman, A.S., Kornreich, B.G., Gould, R.A., Moise, N.S., Butcher, J.T.: Interactions between TGFβ1 and cyclic strain in modulation of myofibroblastic differentiation of canine mitral valve interstitial cells in 3D culture. J. Vet. Cardiol. 14(1), 211–221 (2012)CrossRefGoogle Scholar
  28. 28.
    Eastwood, M., McGrouther, D.A., Brown, R.A.: Fibroblast responses to mechanical forces. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 212(H2), 85–92 (1998)CrossRefGoogle Scholar
  29. 29.
    Liu, W.F. Mechanical regulation of cellular phenotype: implications for vascular tissue regeneration. Cardiovasc. Res. 95(2), 215–222 (2012)Google Scholar
  30. 30.
    Lewinsohn, A.D., Anssari-Benham, A., Lee, D.A., Taylor, P.M., Chester, A.H., Yacoub, M.H., Screen, H.R.C.: Anisotropic strain transfer through the aortic valve and its relevance to the cellular mechanical environment. Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 225(H8), 821–830 (2011)CrossRefGoogle Scholar
  31. 31.
    Huang, S., Huang, H.-Y.S.: Virtualisation of stress distribution in heart valve tissue. Comput. Methods Biomech. Biomed. Eng. 17(15), 1696–1704 (2014). doi: 10.1080/10255842.2013.763937 CrossRefGoogle Scholar
  32. 32.
    Langer, S.A., Fuller, E., Carter, W.C.: OOF: An image-based finite-element analysis of material microstructures. Comput. Sci. Eng. 3(3), 15–23 (2001)CrossRefGoogle Scholar
  33. 33.
    Reid, A.C.E., Lua, R.C., Garcia, R.E., Coffman, V.R., Langer, S.A.: Modelling microstructures with OOF2. Int. J. Mater. Prod. Tech. 35(3–4), 361–373 (2009)CrossRefGoogle Scholar
  34. 34.
    Mirnajafi, A., Raymer, J.M., McClure, L.R., Sacks, M.S.: The flexural rigidity of the aortic valve leaflet in the commissural region. J. Biomech. 39(16), 2966–2973 (2006)CrossRefGoogle Scholar
  35. 35.
    Sun, W., Huang, H.-Y.S., Argento, M.S. and Sacks, M.S. Finite element implementation of a structural constitutive model for planar collagenous tissues. 2003 Proceedings of the Second MIT Conference on Computational Solid and Fluid Mechanics, Cambridge, MA, (2003)Google Scholar
  36. 36.
    Sun, W., Sacks, M.S.: Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4(2–3), 190–199 (2005)CrossRefGoogle Scholar
  37. 37.
    Sun, W., Sacks, M.S., Sellaro, T.L., Slaughter, W.S., Scott, M.J.: Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125(3), 372–380 (2003)CrossRefGoogle Scholar
  38. 38.
    Huang, S. and Huang, H.-Y.S. Virtual Experiments of Heart Valve Tissue. IEEE Engineering in Medicine and Biology Society, pp. 6645–6648 (IEEE, San Diego, CA, 2012).Google Scholar
  39. 39.
    Huang, S. and Huang, H.-Y.S. Tissue- and cell-levels stress distribution of heart valve tissue during diastole. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, (2013).Google Scholar
  40. 40.
    Nye, J.F. Physical properties of crystals, their representation by tensors and matrices. Oxford, Clarendon Press (1957).Google Scholar
  41. 41.
    Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhauser, Boston (2001)Google Scholar
  42. 42.
    Zhao, R.G., Wyss, K., Simmons, C.A.: Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J. Biomech. 42(16), 2768–2773 (2009)CrossRefGoogle Scholar
  43. 43.
    Huang, H.-Y.S., Balhouse, B.N. and Huang, S. A Synergy Study of Heart Valve Tissue Mechanics, Microstructures, and Collagen Concentration. 2012 ASME International Mechanical Engineering Congress and Exposition ASME, Houston (2012)Google Scholar
  44. 44.
    David, H., Boughner, D.R., Vesely, I., Gerosa, G.: The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement? ASAIO J. 40(2), 206–212 (1994)CrossRefGoogle Scholar
  45. 45.
    Lanir, Y.: A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues. J. Biomech. 12(6), 423–436 (1979)CrossRefGoogle Scholar
  46. 46.
    Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983)CrossRefGoogle Scholar
  47. 47.
    Lanir, Y.: A microstructure model for the rheology of mammalian tendon. ASME Journal of Biomechanical Engineering, 102(4), 332–339 (1980)Google Scholar
  48. 48.
    Lanir, Y.: Plausibility of structural constitutive equations for isotropic soft tissue in finite static deformations. J. Appl. Mech. 61, 695–702 (1994)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    Sacks, M.S., Schoen, F.J.: Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3), 359–371 (2002)CrossRefGoogle Scholar
  50. 50.
    Perron, J., Moran, A.M., Gauvreau, K., del Nido, P.J., Mayer, J.E., Jonas, R.A.: Valved homograft conduit repair of the right heart in early infancy. Ann. Thorac. Surg. 68(2), 542–548 (1999)CrossRefGoogle Scholar
  51. 51.
    Stella, J.A., Sacks, M.S.: On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng.-Trans. ASME 129(5), 757–766 (2007)CrossRefGoogle Scholar
  52. 52.
    Gupta, V., Tseng, H., Lawrence, B.D., Grande-Allen, K.J.: Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomater. 5(2), 531–540 (2009)CrossRefGoogle Scholar
  53. 53.
    Ku, C.-H., Johnson, P.H., Batten, P., Sarathchandra, P., Chambers, R.C., Taylor, P.M., Yacoub, M.H., Chester, A.H.: Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71(3), 548–556 (2006)CrossRefGoogle Scholar
  54. 54.
    Smith, K.E., Metzler, S.A., Warnock, J.N.: Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells. Biomech. Model. Mechanobiol. 9(1), 117–125 (2010)CrossRefGoogle Scholar
  55. 55.
    Throm Quinlan, A.M., Sierad, L.N., Capulli, A.K., Firstenberg, L.E., Billiar, K.L.: Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8), e23272 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    Carruthers, C.A., Alfieri, C.M., Joyce, E.M., Watkins, S.C., Yutzey, K.E., Sacks, M.S.: Gene expression and collagen fiber micromechanical interactions of the semilunar heart valve interstitial cell. Cell. Mol. Bioeng. 5(3), 254–265 (2012)CrossRefGoogle Scholar
  57. 57.
    Stella, J.A., Liao, J., Sacks, M.S.: Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J. Biomech. 40(14), 3169–3177 (2007)CrossRefGoogle Scholar
  58. 58.
    Merryman, W.D., Bieniek, P.D., Guilak, F. and Sacks, M.S. Viscoelastic Properties of the Aortic Valve Interstitial Cell. J. Biomech. Eng. 131(4), 041005 (2009)Google Scholar
  59. 59.
    Merryman, W.D., Youn, I., Lukoff, H.D., Krueger, P.M., Guilak, F., Hopkins, R.A., Sacks, M.S.: Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol.-Heart Circ. Physiol. 290(1), H224–H231 (2006)CrossRefGoogle Scholar
  60. 60.
    Rabkin-Aikawa, E., Aikawa, M., Farber, M., Kratz, J.R., Garcia-Cardena, G., Kouchoukos, N.T., Mitchell, M.B., Jonas, R.A., Schoen, F.J.: Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J. Thorac. Cardiovasc. Surg. 128(4), 552–561 (2004)CrossRefGoogle Scholar
  61. 61.
    Latif, N., Sarathchandra, R., Taylor, R.M., Antoniw, J., Yacoub, M.H.: Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochem. Biophys. 43(2), 275–287 (2005)CrossRefGoogle Scholar
  62. 62.
    Gu, X., Masters, K.S.: Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. A 93(4), 1620–1630 (2010)Google Scholar
  63. 63.
    Huang, H.-Y.S., Huang, S., Frazier, Colin P., Prim, Peter, and Harrysson, O., Directional Mechanical Property of Porcine Skin Tissues. J. Mech. Med. Biol. 14(5), (2014). doi:  10.1142/S0219519414500699.

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations