Skip to main content

Emergence of molecular chirality due to chiral interactions in a biological environment

Abstract

We explore the interplay between tunneling process and chiral interactions in the discrimination of chiral states for an ensemble of molecules in a biological environment. Each molecule is described by an asymmetric double-well potential and the environment is modeled as a bath of harmonic oscillators. We carefully analyze different time-scales appearing in the resulting master equation at both weak- and strong-coupling limits. The corresponding results are accompanied by a set of coupled differential equations characterizing optical activity of the molecules. We show that, at the weak-coupling limit, chiral interactions prohibit the coherent racemization induced by decoherence effects and thus preserve the initial chiral state. At the strong-coupling limit, considering the memory effects of the environment, Markovian behavior is observed at long times.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Terentjew, A.P., Klabunovskii, J.I.: The role of dissymmetry in the origin of living material. In: Florkin, M. (ed.) Aspects of the Origin of Life. Pergamon Press, New York (1960)

    Google Scholar 

  2. Mason, S.: Chem. Soc. Rev. 17, 347 (1988)

    Article  Google Scholar 

  3. Palyi, G., et al.: Progress in Biological Chirality. Elsevier, Amsterdam (2004)

    Google Scholar 

  4. Klabunovskii, E. I.: Russ. J. Org. Chem. 48, 881 (2012)

    Article  Google Scholar 

  5. Hund, W.: Z. Phys. 43, 805 (1927)

    ADS  Article  Google Scholar 

  6. Mason, S.F.: Nature 311, 19 (1984)

    ADS  Article  Google Scholar 

  7. Janoschek, J.: Chirality from Weak Boson to the A-Helix. Springer, Berlin (1991)

    Google Scholar 

  8. Barron, L.D.: Chirality at the sub-molecular level: True and false chirality. In: Lough, W.J., Wainer, I.W. (eds.) Chirality in Natural and Applied Science. Blackwell Publishing, Oxford (2002)

    Google Scholar 

  9. Letokhov, V.S.: Phys. Lett. 53A, 275 (1975)

    ADS  Article  Google Scholar 

  10. Harris, R.A., Stodolsky, L.: Phys. Lett. B 78, 313 (1978)

    ADS  Article  Google Scholar 

  11. Quack, M.: Ang. Chem. Int. Ed. Engl. 41, 4618 (2002)

    Article  Google Scholar 

  12. Wesendrup, R., et al.: J. Phys. Chem. A107, 6668 (2003)

    Article  Google Scholar 

  13. Darquié, B., et al.: Chirality 22, 870 (2010)

    Article  Google Scholar 

  14. MacDermott, A.: The weak force and SETH: the search for extra-terrestrial homochirality. In: Cline, D.B. (ed.) Physical Origin of Homochirality in Life. Woodbury (1996)

  15. Mason, S.F.: Molecular optical activity and the chiral discriminations. Cambridge (1982)

  16. Stone, A.J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford (1996)

    Google Scholar 

  17. Avalos, M., et al.: Chem. Rev. 98, 2391 (1998)

    Article  Google Scholar 

  18. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  19. Vardi, A.: J. Chem. Phys. 112, 8743 (2000)

    ADS  Article  Google Scholar 

  20. Jona-Lasinio, G., et al.: Phys. Rev. Lett. 88, 123001 (2002)

    ADS  Article  Google Scholar 

  21. Grecchi, V., Sacchetti, A.: J. Phys. A: Math. Gen. 37, 3527 (2004)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  22. Bargueño, P., et al.: Chem. Phys. Lett. 516, 29 (2011)

    ADS  Article  Google Scholar 

  23. Gonzalo, I., Bargueño, P.: Phys. Chem. Chem. Phys. 13, 17130 (2011)

    Article  Google Scholar 

  24. Dorta-Urra, A., et al.: J. Chem. Phys. 136, 174505 (2012)

    ADS  Article  Google Scholar 

  25. Peñate-Rodriguez, H.C., et al.: Chem. Phys. Lett. 523, 49 (2012)

    ADS  Article  Google Scholar 

  26. Peñate-Rodriguez, H.C., et al.: Chirality 25, 514 (2013)

    Article  Google Scholar 

  27. Giulini, D., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Book  Google Scholar 

  28. Schlosshauer, M.: Decoherence and the Quantum to Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  29. Joos, E., Zeh, H.D.: Z. Phys. B 59, 223 (1985)

    ADS  Article  Google Scholar 

  30. Diosi, L.: Europhys. Lett. 30, 63 (1995)

    ADS  Article  Google Scholar 

  31. Adler, S.L.: J. Phys. A 39, 14067 (2006)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  32. Vacchini, B., Hornberger, K.: Phys. Rep. 478, 71 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  33. Harris, R.A., Stodolsky, L.: J. Chem. Phys. 74, 2145 (1981)

    ADS  Article  Google Scholar 

  34. Harris, R.A., Stodolsky, L.: J. Chem. Phys. 74, 2145 (1981)

    ADS  Article  Google Scholar 

  35. Harris, R.A., Stodolsky, L.: Phys. Lett. B 116, 464 (1982)

    ADS  Article  Google Scholar 

  36. Pfeifer, P.: Rev. Phys. A 26, 701 (1982)

    Article  Google Scholar 

  37. Ghahramani, F.T., Shafiee, A.: Phys. Rev. A 88, 032504 (2013)

    ADS  Article  Google Scholar 

  38. Fain, B.: Phys. Lett. A 89, 455 (1982)

    ADS  Article  Google Scholar 

  39. Trost, J., Hornberger, K.: Phys. Rev. Lett. 103, 023202 (2009)

    ADS  Article  Google Scholar 

  40. Bahrami, M., Shafiee, A.: Comput. Theo. Chem. 978, 84 (2011)

    Article  Google Scholar 

  41. Leggett, A.J., et al.: Rev. Mod. Phys. 59, 1 (1987)

    ADS  Article  Google Scholar 

  42. Gilmore, J., McKenzie, R.H.: Chem. Phys. Lett. 421, 266 (2006)

    ADS  Article  Google Scholar 

  43. Pachon, L.A., Brumer, P.: J. Phys. Chem. Lett. 2, 2728 (2011)

    Article  Google Scholar 

  44. Fleming, G., Scholes, G., Cheng, Y.: Procedia Chem. 3, 38 (2011)

    Article  Google Scholar 

  45. Huelga, S., Plenio, M.: Procedia Chem. 3, 248 (2011)

    Article  Google Scholar 

  46. Shi, Q., Zhu, L., Chen, L.: J. Chem. Phys. 135, 044505 (2011)

    ADS  Article  Google Scholar 

  47. Lei, C., Zhang, W.: Phys. Rev. A 84, 052116 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  48. Zhang, J., et al.: Phys. Rev. B 84, 214304 (2011)

    ADS  Article  Google Scholar 

  49. Cheche, T.O., Lin, S.H.: Phys. Rev. E 64, 061103 (2001)

    ADS  Article  Google Scholar 

  50. Wilhelm, F.K., Kleff, S., von Delft, J.: Chem. Phys. 296, 345 (2003)

    ADS  Article  Google Scholar 

  51. Nakajima, S.: Progr. Theor. Phys. 20, 948 (1958)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  52. Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960)

    MathSciNet  ADS  Article  Google Scholar 

  53. Grifoni, M., et al.: Eur. Phys. J. B 10, 719 (1999)

    ADS  Article  Google Scholar 

  54. Silbey, R., Harris, R.A.: J. Chem. Phys. 80, 2615 (1984)

    ADS  Article  Google Scholar 

  55. Harris, R.A., Silbey, R.: J. Chem. Phys. 83, 1069 (1985)

    ADS  Article  Google Scholar 

  56. Silbey, R., Harris, R.A.: J. Phys. Chem. 93, 7062 (1989)

    Article  Google Scholar 

  57. Townes, C.H., Schawlow, A.L.: Microwave Spectroscopy. McGraw-Hill, New York (1955)

    Google Scholar 

  58. Herzberg, G.: Spectra, Molecular and Structure, Molecular. Infrared and Raman Spectra of Polyatomic Molecules. Krieger, Malabar (1991)

    Google Scholar 

  59. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2008)

    MATH  Book  Google Scholar 

  60. Bahrami, M., Bassi, A.: Phys. Rev. A 84, 062115 (2011)

    ADS  Article  Google Scholar 

  61. Puri, R.P.: Mathematical Methods Of Quantum Optics. Springer, Berlin (2001)

    MATH  Book  Google Scholar 

  62. Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  63. Mathai, A.M.: A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  64. Bothma, J., Gilmore, J., McKenzie, R.H.: Modelling quantum decoherence in biomolecules. In: Abbott, D., Davis, P.C.W., Pati, A.K. (eds.) Quantum Aspects of Life. Woodbury (1996)

  65. Gilmore, J., McKenzie, R.H.: J. Phys. Condens. Matter 17, 1735 (2005)

    ADS  Article  Google Scholar 

  66. Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)

    Google Scholar 

  67. Laine, E-M.: Phys. Scr. T 140, 014053 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mohammad Bahrami for his instructive comments, and Dr. Mohammad Arjmand for an editorial reading of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shafiee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tirandaz, A., Ghahramani, F.T. & Shafiee, A. Emergence of molecular chirality due to chiral interactions in a biological environment. J Biol Phys 40, 369–386 (2014). https://doi.org/10.1007/s10867-014-9356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9356-x

Keywords

  • Biomolecular homochirality
  • Chiral interactions
  • Decoherence theory