Skip to main content
Log in

Influence of individual cell motility on the 2D front roughness dynamics of tumour cell colonies

Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The dynamics of in situ 2D HeLa cell quasi-linear and quasi-radial colony fronts in a standard culture medium is investigated. For quasi-radial colonies, as the cell population increased, a kinetic transition from an exponential to a constant front average velocity regime was observed. Special attention was paid to individual cell motility evolution under constant average colony front velocity looking for its impact on the dynamics of the 2D colony front roughness. From the directionalities and velocity components of cell trajectories in colonies with different cell populations, the influence of both local cell density and cell crowding effects on individual cell motility was determined. The average dynamic behaviour of individual cells in the colony and its dependence on both local spatio-temporal heterogeneities and growth geometry suggested that cell motion undergoes under a concerted cell migration mechanism, in which both a limiting random walk-like and a limiting ballistic-like contribution were involved. These results were interesting to infer how biased cell trajectories influenced both the 2D colony spreading dynamics and the front roughness characteristics by local biased contributions to individual cell motion. These data are consistent with previous experimental and theoretical cell colony spreading data and provide additional evidence of the validity of the Kardar-Parisi-Zhang equation, within a certain range of time and colony front size, for describing the dynamics of 2D colony front roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T.: Wound repair and regeneration. Nature 453, 314–321 (2008)

    Article  ADS  Google Scholar 

  2. Lecaudey, V., Gilmour, D.: Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18, 102–107 (2006)

    Article  Google Scholar 

  3. Chicoine, M. R., Silbergeld, D.L.: The in vitro motility of human gliomas increases with increasing grade of malignancy. Cancer 75, 2904–2909 (1995)

    Article  Google Scholar 

  4. Kumar, S., Weaver, M.V.: Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metast. Rev. 28, 113–127 (2009)

    Article  Google Scholar 

  5. Yamazaki, D., Kurisu, S., Takenawa, T.: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96, 379–386 (2005)

    Article  Google Scholar 

  6. Li, S., Guan, J-L., Chien, S.: Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7, 105–150 (2005)

    Article  Google Scholar 

  7. Fletcher, D.A., Theriot, J.A.: An introduction to cell motility for the physical scientist. Phys. Biol. 1, T1–T10 (2004)

    Article  ADS  Google Scholar 

  8. Selmeczi, D., Mosler, S., Hagedorn, P.H., Larsen, N.B., Flyvbjerg, H.: Cell motility as persistent random motion: theories from experiments. Biophys. J. 89, 912–931 (2005)

    Article  Google Scholar 

  9. Douezan, S., Dumond, J., Brochard-Wyart, F.: Wetting transitions of cellular aggregates induced by substrate rigidity. Soft Matt. 8, 4578–4583 (2012)

    Article  ADS  Google Scholar 

  10. DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S. M., Lauffenburger, D.A.: Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993)

    Article  Google Scholar 

  11. Montell, D.J.: Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008)

    Article  ADS  Google Scholar 

  12. Alt-Holland, A., Zhang, W., Margulis, A., Garlick, J.A.: Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma. Semin. Cancer Biol. 15, 84–96 (2005)

    Article  Google Scholar 

  13. Tzvetkova-Chevolleau, T., Stéphanou, A., Fuard, D., Ohayon, J., Schiavone, P., Tracqui, P.: The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29, 1541–1551 (2008)

    Article  Google Scholar 

  14. Friedl, P., Glimour, D.: Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009)

    Article  Google Scholar 

  15. Yin, J., Xu, K., Zhang, J., Kumar, A., Yu, F.-S.X.: Wound-induced ATP release and EGF receptor activation in epithelial cells. J. Cell Sci. 120, 815–825 (2007)

    Article  Google Scholar 

  16. Nicklić, D. L., Boettiger, A. N., Bar-Sagi, D., Carbeck, J. D., Shvartsman, S. Y.: Role of boundary conditions in an experimental model of epithelial wound healing. Am. J. Physiol. Cell Physiol. 291, C68–C78 (2006)

    Article  Google Scholar 

  17. Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., Buguin, A., Silberzan, P.: Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. USA 104, 15988–15993 (2007)

    Article  ADS  Google Scholar 

  18. Sengers, B.G., Please, C.P., Oreffo, R.O.C.: Experimental Characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4, 1107–1117 (2007)

    Article  Google Scholar 

  19. Farooqui, R., Fenteany, G.: Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005)

    Article  Google Scholar 

  20. Bindschadler, M., McGrath, J.L.: Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–884 (2006)

    Article  Google Scholar 

  21. Takamizawa, K., Niu, S., Matsuda, T.: Mathematical simulation of unidirectional tissue formation: in vitro transanastomotic endothelization model. J. Biomater. Sci. Polym. Ed. 8, 323–334 (1996)

    Article  Google Scholar 

  22. Savla, U., Olson, L.E., Waters, C.M.: Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J. Appl. Physiol. 96, 566–574 (2004)

    Article  Google Scholar 

  23. Cai, A.Q., Landman, K.A., Hughes, B.D.: Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol. 245, 576–594 (2007)

    Article  MathSciNet  Google Scholar 

  24. Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78, 061904 (2008)

    Article  ADS  Google Scholar 

  25. Radszuweit, M., Block, M., Hengstler, J.G., Schöll, E., Drasdo, D.: Comparing the growth kinetics of cell populations in two and three dimensions. Phys. Rev. E 79, 051907 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Simpson, M.J., Baker, R.E., McCue, S.W.: Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models. Phys. Rev. E 83, 021901 (2011)

    Article  ADS  Google Scholar 

  27. Barabasi, A.L., Stanley, H.E.: Fractal concepts in surface growth. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  28. Meakin, P.: Fractal, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  29. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys. Rev. E 85, 011918 (2012)

    Article  ADS  Google Scholar 

  30. Kardar, M., Parisi, G., Zhang, Y-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  31. Block, M., Schöll, E., Drasdo, D.: Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys. Rev. Lett. 99, 248101 (2007)

    Article  ADS  Google Scholar 

  32. Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P., Fredberg, J.J.: Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009)

    Article  Google Scholar 

  33. Tambe, D.T., Hardin, C.C., Angelini, T.E., Rajendran, K., Park, C.Y., Serra-Picamal, X., Zhou, E.H., Zaman, M.H., Butler, J.P., Weitz, D.A., Fredberg, J.J., Trepat, X.: Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011)

    Article  ADS  Google Scholar 

  34. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., Arvia, A.J., González, P.H.: Morphology and dynamic scaling analysis of cell colonies with linear growth fronts. Phys. Rev. E 82, 031903 (2010)

    Article  ADS  Google Scholar 

  35. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Dynamics and morphology characteristics of cell colonies with radially spreading growth fronts. Phys. Rev. E 84, 021917 (2011)

    Article  ADS  Google Scholar 

  36. Rieu, J.P., Upadhyaya, A., Glazier, J.A., Ouchi, N.B., Sawada, Y.: Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J. 79, 1903–1914 (2000)

    Article  Google Scholar 

  37. Diambra, L., Cintra, L.C., Chen, Q., Schubert, D., Costa, L., da, F.: Cell adhesion protein decreases cell motion: statistical characterization of locomotion activity. Physica. A 365, 481–490 (2006)

    Article  ADS  Google Scholar 

  38. Li, L., Wang, B.H., Wang, S., Moalim-Nour, L., Mohib, K., Lohnes, D., Wang, L.: Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys. J. 98, 2442–2451 (2010)

    Article  ADS  Google Scholar 

  39. Chen, E.H., Grote, E., Mohler, W., Vignery, A.: Cell-cell fusion. FEBS Lett. 581, 2181–2193 (2007)

    Article  Google Scholar 

  40. Straight, A.F., Cheung, A., Limouze, J., Chen, I., Westwood, N.J., Sellers, J.R., Mitchison, T.J.: Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003)

    Article  ADS  Google Scholar 

  41. Haga, H., Irahara, C., Kobayashi, R., Nakagaki, T., Kawabata, K.: Collective movement of epithelial cells on a collagen gel substrate. Biophys. J. 88, 2250–2256 (2005)

    Article  Google Scholar 

  42. Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124, 516–24 (1985)

    Article  Google Scholar 

  43. Mueller-Klieser, W., Freyer, J.P., Sutherland, R.M.: Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br. J. Cancer 53, 345–353 (1986)

    Article  Google Scholar 

  44. Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., Brú, I.: The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)

    Article  ADS  Google Scholar 

  45. Galle, J., Hoffmann, M., Aust, G.: From single cells to tissue architecture: a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J. Math. Biol. 58, 261–283 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Galle, J., Sittig, D., Hanisch, I., Wobus, M., Wandel, E., Loeffler, M., Aust, G.: Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am. J. Phathol. 169, 1802–1811 (2006)

    Article  Google Scholar 

  47. Drasdo, D., Hoehme, S.: A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2, 133–147 (2005)

    Article  ADS  Google Scholar 

  48. Menchón, S.A., Condat, C.A.: Cancer growth: Predictions of a realistic model. Phys. Rev. E 78, 022901 (2008)

    Article  ADS  Google Scholar 

  49. Galle, J., Loeffler, M., Drasdo, D.: Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 88, 62–75 (2005)

    Article  ADS  Google Scholar 

  50. Drasdo, D., Hoehme, S., Block, M.: On the role of physics in the growth and pattern formation of multi-cellular systems: What can we learn from individual cell-based models. J. Stat. Phys. 128, 287–345 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Dulbeco, R., Stoker, M.G.: Conditions determining initiation of DNA synthesis in 3T3 cells. Proc. Natl. Acad. Sci. USA 66, 204–210 (1970)

    Article  ADS  Google Scholar 

  52. Todaro, G.J., Lazar, K.G., Green, H.: The initiation of cell division in a contact-inhibited mammalian cell line. J. Cell. Physiol. 66, 325–333 (1965)

    Article  Google Scholar 

  53. Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts Model. J. Theor. Biol. 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  54. Aubert, M., Badoual, M., Grammaticos, B.: A model for short- and long range interactions of migrating tumor cells. Acta Biotheor. 56, 297–314 (2008)

    Article  Google Scholar 

  55. Barkey, P. D.: Structure and pattern formation in electrodeposition. In: Alkire, R.C. (ed.) Advances in Electrochemical Science and Engineering, pp 151–192. J. Wiley-VHC-Verlag, New York, Frankfurt a/M (2001)

    Google Scholar 

  56. Angelini, T.E., Hannezo, E., Trepat, X., Fredberg, J.J., Weitz, D.A.: Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010)

    Article  ADS  Google Scholar 

  57. Murray, J. D.: Mathematical Biology: I. An Introduction. Springer-Verlag, Berlin (2002)

    Google Scholar 

  58. Okubo, A.: Diffusion and Ecological Problems. Springer-Verlag, Berlin (1980)

    MATH  Google Scholar 

  59. Aubert, M., Badoual, M., Christov, C., Grammaticos, B.: A model for glioma cell migration on collagen and astrocytes. J. R. Soc. Interface 5, 75–83 (2008)

    Article  Google Scholar 

  60. López, J.M., Cuerno, R.: Power spectrum scaling in anomalous kinetic roughening of surfaces. Physica. A 246, 329–347 (1997)

    Article  ADS  Google Scholar 

  61. Ramasco, J.J., López, J.M., Rodríguez, M.A.: Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett 84, 2199–2202 (2000)

    Article  ADS  Google Scholar 

  62. Wio, H.S., Escudero, C., Revelli, J.A., Deza, R.R, de la Lama, M.S.: Recent developments on the Kardar–Parisi–Zhang surface-growth equation. Phil. Trans. R. Soc. A 369, 396–411 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Wio, H.S., Revelli, J.A., Deza, R.R., Escudero, C, de la Lama, M.S.: KPZ equation: Galilean-invariance violation, consistency, and fluctuation-dissipation issues in real-space discretization. Europhys. Lett. 89, 40008 (2010)

    Article  ADS  Google Scholar 

  64. Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010)

    Article  ADS  Google Scholar 

  65. Calabrese, P., Le Doussal, P.: Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions. Phys. Rev. Lett 106, 250603 (2011)

    Article  ADS  Google Scholar 

  66. Khanin, K., Nechaev, S., Oshanin, G., Sobolevski, A., Vasilyev, O.: Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface. Phys. Rev. E 82, 061107 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  67. Takeuchi, A.K., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

    Article  ADS  Google Scholar 

  68. Takeuchi, A.K., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. 1, 34 (2011). doi:10.1038/srep00034

    Article  ADS  Google Scholar 

  69. Takeuchi, A.K., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejo Nacional de Investigaciones Cientficas y Técnicas of Argentina (PIP 2231). P.H.G. thanks the Comisión de Investigaciones Científicas (CIC), Pcia. Bs. As., for financial support. We acknowledge Silvia Coronato for technical assistance. N.E.M. thanks the Universidad Nacional de La Plata and the Ministerio Nacional de Educación for the scholarship from the program ‘Estímulo a las Vocaciones Científicas’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pasquale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzzio, N.E., Pasquale, M.A., González, P.H. et al. Influence of individual cell motility on the 2D front roughness dynamics of tumour cell colonies. J Biol Phys 40, 285–308 (2014). https://doi.org/10.1007/s10867-014-9349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9349-9

Keywords

Navigation