Abstract
The dynamics of in situ 2D HeLa cell quasi-linear and quasi-radial colony fronts in a standard culture medium is investigated. For quasi-radial colonies, as the cell population increased, a kinetic transition from an exponential to a constant front average velocity regime was observed. Special attention was paid to individual cell motility evolution under constant average colony front velocity looking for its impact on the dynamics of the 2D colony front roughness. From the directionalities and velocity components of cell trajectories in colonies with different cell populations, the influence of both local cell density and cell crowding effects on individual cell motility was determined. The average dynamic behaviour of individual cells in the colony and its dependence on both local spatio-temporal heterogeneities and growth geometry suggested that cell motion undergoes under a concerted cell migration mechanism, in which both a limiting random walk-like and a limiting ballistic-like contribution were involved. These results were interesting to infer how biased cell trajectories influenced both the 2D colony spreading dynamics and the front roughness characteristics by local biased contributions to individual cell motion. These data are consistent with previous experimental and theoretical cell colony spreading data and provide additional evidence of the validity of the Kardar-Parisi-Zhang equation, within a certain range of time and colony front size, for describing the dynamics of 2D colony front roughness.














References
Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T.: Wound repair and regeneration. Nature 453, 314–321 (2008)
Lecaudey, V., Gilmour, D.: Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18, 102–107 (2006)
Chicoine, M. R., Silbergeld, D.L.: The in vitro motility of human gliomas increases with increasing grade of malignancy. Cancer 75, 2904–2909 (1995)
Kumar, S., Weaver, M.V.: Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metast. Rev. 28, 113–127 (2009)
Yamazaki, D., Kurisu, S., Takenawa, T.: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96, 379–386 (2005)
Li, S., Guan, J-L., Chien, S.: Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7, 105–150 (2005)
Fletcher, D.A., Theriot, J.A.: An introduction to cell motility for the physical scientist. Phys. Biol. 1, T1–T10 (2004)
Selmeczi, D., Mosler, S., Hagedorn, P.H., Larsen, N.B., Flyvbjerg, H.: Cell motility as persistent random motion: theories from experiments. Biophys. J. 89, 912–931 (2005)
Douezan, S., Dumond, J., Brochard-Wyart, F.: Wetting transitions of cellular aggregates induced by substrate rigidity. Soft Matt. 8, 4578–4583 (2012)
DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S. M., Lauffenburger, D.A.: Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993)
Montell, D.J.: Morphogenetic cell movements: diversity from modular mechanical properties. Science 322, 1502–1505 (2008)
Alt-Holland, A., Zhang, W., Margulis, A., Garlick, J.A.: Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma. Semin. Cancer Biol. 15, 84–96 (2005)
Tzvetkova-Chevolleau, T., Stéphanou, A., Fuard, D., Ohayon, J., Schiavone, P., Tracqui, P.: The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29, 1541–1551 (2008)
Friedl, P., Glimour, D.: Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009)
Yin, J., Xu, K., Zhang, J., Kumar, A., Yu, F.-S.X.: Wound-induced ATP release and EGF receptor activation in epithelial cells. J. Cell Sci. 120, 815–825 (2007)
Nicklić, D. L., Boettiger, A. N., Bar-Sagi, D., Carbeck, J. D., Shvartsman, S. Y.: Role of boundary conditions in an experimental model of epithelial wound healing. Am. J. Physiol. Cell Physiol. 291, C68–C78 (2006)
Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., Buguin, A., Silberzan, P.: Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. USA 104, 15988–15993 (2007)
Sengers, B.G., Please, C.P., Oreffo, R.O.C.: Experimental Characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface 4, 1107–1117 (2007)
Farooqui, R., Fenteany, G.: Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005)
Bindschadler, M., McGrath, J.L.: Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–884 (2006)
Takamizawa, K., Niu, S., Matsuda, T.: Mathematical simulation of unidirectional tissue formation: in vitro transanastomotic endothelization model. J. Biomater. Sci. Polym. Ed. 8, 323–334 (1996)
Savla, U., Olson, L.E., Waters, C.M.: Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J. Appl. Physiol. 96, 566–574 (2004)
Cai, A.Q., Landman, K.A., Hughes, B.D.: Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol. 245, 576–594 (2007)
Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78, 061904 (2008)
Radszuweit, M., Block, M., Hengstler, J.G., Schöll, E., Drasdo, D.: Comparing the growth kinetics of cell populations in two and three dimensions. Phys. Rev. E 79, 051907 (2009)
Simpson, M.J., Baker, R.E., McCue, S.W.: Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models. Phys. Rev. E 83, 021901 (2011)
Barabasi, A.L., Stanley, H.E.: Fractal concepts in surface growth. Cambridge University Press, Cambridge (1993)
Meakin, P.: Fractal, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998)
Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys. Rev. E 85, 011918 (2012)
Kardar, M., Parisi, G., Zhang, Y-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)
Block, M., Schöll, E., Drasdo, D.: Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys. Rev. Lett. 99, 248101 (2007)
Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P., Fredberg, J.J.: Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009)
Tambe, D.T., Hardin, C.C., Angelini, T.E., Rajendran, K., Park, C.Y., Serra-Picamal, X., Zhou, E.H., Zaman, M.H., Butler, J.P., Weitz, D.A., Fredberg, J.J., Trepat, X.: Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10, 469–475 (2011)
Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., Arvia, A.J., González, P.H.: Morphology and dynamic scaling analysis of cell colonies with linear growth fronts. Phys. Rev. E 82, 031903 (2010)
Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Dynamics and morphology characteristics of cell colonies with radially spreading growth fronts. Phys. Rev. E 84, 021917 (2011)
Rieu, J.P., Upadhyaya, A., Glazier, J.A., Ouchi, N.B., Sawada, Y.: Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J. 79, 1903–1914 (2000)
Diambra, L., Cintra, L.C., Chen, Q., Schubert, D., Costa, L., da, F.: Cell adhesion protein decreases cell motion: statistical characterization of locomotion activity. Physica. A 365, 481–490 (2006)
Li, L., Wang, B.H., Wang, S., Moalim-Nour, L., Mohib, K., Lohnes, D., Wang, L.: Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys. J. 98, 2442–2451 (2010)
Chen, E.H., Grote, E., Mohler, W., Vignery, A.: Cell-cell fusion. FEBS Lett. 581, 2181–2193 (2007)
Straight, A.F., Cheung, A., Limouze, J., Chen, I., Westwood, N.J., Sellers, J.R., Mitchison, T.J.: Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003)
Haga, H., Irahara, C., Kobayashi, R., Nakagaki, T., Kawabata, K.: Collective movement of epithelial cells on a collagen gel substrate. Biophys. J. 88, 2250–2256 (2005)
Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124, 516–24 (1985)
Mueller-Klieser, W., Freyer, J.P., Sutherland, R.M.: Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. Br. J. Cancer 53, 345–353 (1986)
Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., Brú, I.: The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)
Galle, J., Hoffmann, M., Aust, G.: From single cells to tissue architecture: a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems. J. Math. Biol. 58, 261–283 (2009)
Galle, J., Sittig, D., Hanisch, I., Wobus, M., Wandel, E., Loeffler, M., Aust, G.: Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am. J. Phathol. 169, 1802–1811 (2006)
Drasdo, D., Hoehme, S.: A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2, 133–147 (2005)
Menchón, S.A., Condat, C.A.: Cancer growth: Predictions of a realistic model. Phys. Rev. E 78, 022901 (2008)
Galle, J., Loeffler, M., Drasdo, D.: Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 88, 62–75 (2005)
Drasdo, D., Hoehme, S., Block, M.: On the role of physics in the growth and pattern formation of multi-cellular systems: What can we learn from individual cell-based models. J. Stat. Phys. 128, 287–345 (2007)
Dulbeco, R., Stoker, M.G.: Conditions determining initiation of DNA synthesis in 3T3 cells. Proc. Natl. Acad. Sci. USA 66, 204–210 (1970)
Todaro, G.J., Lazar, K.G., Green, H.: The initiation of cell division in a contact-inhibited mammalian cell line. J. Cell. Physiol. 66, 325–333 (1965)
Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts Model. J. Theor. Biol. 216, 85–100 (2002)
Aubert, M., Badoual, M., Grammaticos, B.: A model for short- and long range interactions of migrating tumor cells. Acta Biotheor. 56, 297–314 (2008)
Barkey, P. D.: Structure and pattern formation in electrodeposition. In: Alkire, R.C. (ed.) Advances in Electrochemical Science and Engineering, pp 151–192. J. Wiley-VHC-Verlag, New York, Frankfurt a/M (2001)
Angelini, T.E., Hannezo, E., Trepat, X., Fredberg, J.J., Weitz, D.A.: Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010)
Murray, J. D.: Mathematical Biology: I. An Introduction. Springer-Verlag, Berlin (2002)
Okubo, A.: Diffusion and Ecological Problems. Springer-Verlag, Berlin (1980)
Aubert, M., Badoual, M., Christov, C., Grammaticos, B.: A model for glioma cell migration on collagen and astrocytes. J. R. Soc. Interface 5, 75–83 (2008)
López, J.M., Cuerno, R.: Power spectrum scaling in anomalous kinetic roughening of surfaces. Physica. A 246, 329–347 (1997)
Ramasco, J.J., López, J.M., Rodríguez, M.A.: Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett 84, 2199–2202 (2000)
Wio, H.S., Escudero, C., Revelli, J.A., Deza, R.R, de la Lama, M.S.: Recent developments on the Kardar–Parisi–Zhang surface-growth equation. Phil. Trans. R. Soc. A 369, 396–411 (2011)
Wio, H.S., Revelli, J.A., Deza, R.R., Escudero, C, de la Lama, M.S.: KPZ equation: Galilean-invariance violation, consistency, and fluctuation-dissipation issues in real-space discretization. Europhys. Lett. 89, 40008 (2010)
Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010)
Calabrese, P., Le Doussal, P.: Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions. Phys. Rev. Lett 106, 250603 (2011)
Khanin, K., Nechaev, S., Oshanin, G., Sobolevski, A., Vasilyev, O.: Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface. Phys. Rev. E 82, 061107 (2010)
Takeuchi, A.K., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)
Takeuchi, A.K., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. 1, 34 (2011). doi:10.1038/srep00034
Takeuchi, A.K., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)
Acknowledgments
This work was supported by the Consejo Nacional de Investigaciones Cientficas y Técnicas of Argentina (PIP 2231). P.H.G. thanks the Comisión de Investigaciones Científicas (CIC), Pcia. Bs. As., for financial support. We acknowledge Silvia Coronato for technical assistance. N.E.M. thanks the Universidad Nacional de La Plata and the Ministerio Nacional de Educación for the scholarship from the program ‘Estímulo a las Vocaciones Científicas’.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muzzio, N.E., Pasquale, M.A., González, P.H. et al. Influence of individual cell motility on the 2D front roughness dynamics of tumour cell colonies. J Biol Phys 40, 285–308 (2014). https://doi.org/10.1007/s10867-014-9349-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10867-014-9349-9