Journal of Biological Physics

, Volume 40, Issue 1, pp 1–14 | Cite as

An effective mesoscopic model of double-stranded DNA

Original Paper


Watson and Crick’s epochal presentation of the double helix structure in 1953 has paved the way to intense exploration of DNA’s vital functions in cells. Also, recent advances of single molecule techniques have made it possible to probe structures and mechanics of constrained DNA at length scales ranging from nanometers to microns. There have been a number of atomistic scale quantum chemical calculations or molecular level simulations, but they are too computationally demanding or analytically unfeasible to describe the DNA conformation and mechanics at mesoscopic levels. At micron scales, on the other hand, the wormlike chain model has been very instrumental in describing analytically the DNA mechanics but lacks certain molecular details that are essential in describing the hybridization, nano-scale confinement, and local denaturation. To fill this fundamental gap, we present a workable and predictive mesoscopic model of double-stranded DNA where the nucleotides beads constitute the basic degrees of freedom. With the inter-strand stacking given by an interaction between diagonally opposed monomers, the model explains with analytical simplicity the helix formation and produces a generalized wormlike chain model with the concomitant large bending modulus given in terms of the helical structure and stiffness. It also explains how the helical conformation undergoes overstretch transition to the ladder-like conformation at a force plateau, in agreement with the experiment.


DNA helical structure DNA elasticity generalized wormlike chain model 


  1. 1.
    Garcia, H.G., Grayson, P., Han, L., Inamdar, M., Kondev, J., Nelson, P.C., Phillips, R., Widom, J., Wiggins, P.A.: Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85, 115–130 (2006)CrossRefGoogle Scholar
  2. 2.
    Bloomfield, V.A., Crothers, D.M., Tinoco, I., Jr.: Nucleic acids: structures, properties, and functions. University Science Books, Sausalito (2000)Google Scholar
  3. 3.
    Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Marko, J.F., Siggia, E.: Stretching DNA. Macromolecules 28, 8759–8770 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Moroz, J.D., Nelson, P.: Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Cloutier, T.E., Widom, J.: Spontaneous sharp bending of double-stranded DNA. Mol. Cell 14, 355–362 (2004)CrossRefGoogle Scholar
  7. 7.
    Wiggins, P.A., Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Dekker, C., Nelson, P.C.: High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotech. 1, 137–141 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., Caron, F.: DNA: an extensible molecule. Science 271, 792–794 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Ahsan, A., Rudnick, J., Bruinsma, R.: Elasticity theory of the B-DNA to S-DNA transition. Biophys. J. 74, 132–137 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Léger, J.F., Romano, G., Sarkar, A., Robert, J., Bourdieu, L., Chatenay, D., Marko, J.-F.: Structural transitions of a twisted and stretched DNA molecule. Phys. Rev. Lett. 83, 1066–1069 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Storm, C., Nelson, P.C.: The bend stiffness of S-DNA. Europhys. Lett. 62, 760–766 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Whitelam, S., Geissler, P.L., Pronk, S.: Microscopic implications of S-DNA. Phys. Rev. E. 82, 021907-6 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Cooper, V.R., Thonhauser, T., Puzder, A., Schröder, E., Lundqvist, B.I., Langreth, D.C.: Stacking interactions and the twist of DNA. J. Am. Chem. Soc. 130, 1304–1308 (2008)CrossRefGoogle Scholar
  15. 15.
    Kool, E.T.: Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22 (2001); Mills, J.B., Hagerman, P.J.: Origin of the intrinsic rigidity of DNA. Nucl. Acids Res. 32, 4055–4059 (2004)Google Scholar
  16. 16.
    Knotts, T.A. IV, Rathore, N., Schwartz, D., de Pablo, J.J.: A coarse grain model for DNA. J. Chem. Phys. 126, 084901 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Hunter, C.A., Lu, X.-J.: DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide x-ray crystal structures. J. Mol. Biol. 265, 603–619 (1997)CrossRefGoogle Scholar
  18. 18.
    Mills, J.B., Hagerman, P.J.: Origin of the intrinsic rigidity of DNA. Nucl. Acids Res. 32, 4055–4059 (2004)CrossRefGoogle Scholar
  19. 19.
    Haijun, Z., Yang, Z., Zhong-can, O.-Y.: Bending and base-stacking interactions in double-stranded DNA. Phys. Rev. Lett. 82, 4560–4563 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Cocco, S., Monasson, R.: Statistical mechanics of torque induced denaturation of DNA. Phys. Rev. Lett. 83, 5178–5181 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Theodorakopoulos, N., Dauxois, T., Peyrad, M.: Order of the phase transition in models of DNA thermal denaturation. Phys. Rev. Lett. 85, 6–9 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Barbi, M., Lepri, S., Peyrard, M., Theodorakopoulos, N.: Thermal denaturation of a helicoidal DNA model. Phys. Rev. E. 68, 061909-14 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Col, A.D., Liverpool, T.B.: Statistical mechanics of double-helical polymers. Phys. Rev. E. 69, 061907-5 (2004)ADSGoogle Scholar
  24. 24.
    Cadoni, M., Leo, R.D., Gaeta, G.: Composite model for DNA torsion dynamics. Phys. Rev. E. 75, 021919-21 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Lee, O., Jeon, J.-H., Sung, W.: How double-stranded DNA breathing enhances its flexibility and instability on short length scales. Phys. Rev. E. 81, 021906-4 (2010)ADSGoogle Scholar
  26. 26.
    Huertas, M.L., Navarro, S., Martinez, M.C.L., de la Torre, J.G.: Simulation of the conformation and dynamics of a double-helical model for DNA. Biophys. J. 73, 3142–3153 (1997)CrossRefGoogle Scholar
  27. 27.
    One can also check that \(\left(\frac{\partial^2 E}{\partial \Omega^2}\right)_{\Omega\rightarrow\pm0}<0\) in this caseGoogle Scholar
  28. 28.
    Danilowicz, C., Limouse, C., Hatch, K., Conover, A., Coljee, V.W., Kleckner, N., Prentiss, M.: The structure of DNA overstretched from the 55 ends differs from the structure of DNA overstretched from the 33 ends. Proc. Natl. Acad. Sci. USA 106, 13196–13201 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Gore, J., Bryant, Z., Nollmann, M., Le, M.U., Cozzarelli, N.R., Bustamante, C.: DNA overwinds when stretched. Nature 442, 836–839 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys. J. 80, 882–893 (2001)CrossRefGoogle Scholar
  31. 31.
    Shokri, L., McCauley, M.J., Rouzina, I., Williams, M.C.: DNA overstretching in the presence of glyoxal: structural evidence of force-induced DNA melting. Biophys. J. 95, 1248–1255 (2008)CrossRefGoogle Scholar
  32. 32.
    van Mameren, J., Gross, P., Farge, G., Hooijman, P., Modesti, M., Falkenberg, M., Wuite, G.J.L., Peterman, E.J.G.: Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc. Natl. Acad. Sci. USA 106, 18231–18236 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Fu, H., Chen, H., Marko, J.F., Yan, J.: Two distinct overstretched DNA states. Nucl. Acids Res. 38, 5594–5600 (2010)CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Chen, H., Fu, H., Doyle, P.S., Yan, J.: Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proc. Natl. Acad. Sci. USA 109, 8103–8108 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, X., Chen, H., Le, S., Rouzina, I., Doyle, P.S., Yan, J.: Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. Proc. Natl. Acad. Sci. USA. 110, 3865–3870 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    King, G.A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G.J.L., Peterman, E.J.G.: Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proc. Natl. Acad. Sci. USA 110(10), 3859–3864 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    The discrepancy mainly comes from the fact that a single-well confining potential was assumed for the diagonal interactions (explaining the stacking interactions) in our study. This eventually makes the flat ladder structure always energetically favorable compared to any helical DNA structure when the DNA molecule is stretched out beyond a certain length. One can in principle reconcile it by introducing a double-well confining potential for the diagonal interactions in order to allow an energetically stable underwound helical structure for a stretched DNAGoogle Scholar
  38. 38.
    Krueger, A., Protozanova, E., Frank-Kamenetskii, M.D.: Sequence-dependent basepair opening in DNA double helix. Biophys. J. 90, 3091–3099 (2006)CrossRefGoogle Scholar
  39. 39.
    Jost, D., Everaers, R.: A unified Poland-Scheraga model of oligo- and polynucleotide DNA melting: salt effects and predictive power. Biophys. J. 96, 1056–1067 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Jeon, J.-H., Adamcik, J., Dientler, G., Metzler, R.: Supercoiling induces denaturation bubbles in circular DNA. Phys. Rev. Lett. 105, 208101-4 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Kim, J.-Y., Jeon, J.-H., Sung, W.: A breathing wormlike chain model on DNA denaturation and bubble: effects of stacking interactions. J. Chem. Phys. 128, 055101 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Bouchiat, C., Wang, M.D., Allemand, J., Strick, T., Block, S.M., Croquette, V.: Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76, 409–413 (1999)CrossRefGoogle Scholar
  43. 43.
    Bryant, Z., Stone, M.D., Gore, J., Smith, S.B., Cozzarelli, N.R., Bustamante, C.: Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Campa, A., Giansanti: Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains. Phys. Rev. E. 58, 3585–3588 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    Jeon, J.-H., Sung, W., Ree, F.H.: A semiflexible chain model of local denaturation in double-stranded DNA. J. Chem. Phys. 124, 164905 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Dessinges, M.-N., Maier, B., Zhang, Y., Peliti, M., Bensimon, D., Croquette, V.: Stretching single stranded DNA, a model polyelectrolyte. Phys. Rev. Lett. 89, 248102-4 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and PCTPPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations