Skip to main content

Advertisement

Log in

How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding a detailed description of spatial distribution for positive and negative charges across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities, as well as dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Outer and inner surfaces, respectively.

  2. The T = pseudo 3 icosahedral capsids do not obey the Caspar–Klug principle of quasi-equivalence because the basic unit is composed of three different (but morphologically similar) proteins.

  3. In all such plots, the following legend is used for different virus types: single-stranded genome (circles), double-stranded genome (squares), bacteriophages (diamonds; both ss and ds genome), and T = p3 ssRNA viruses (triangles).

References

  1. Bernal, J., Fankuchen, I.: X-ray and crystallographic studies of plant virus preparations. J. Gen. Physiol. 25, 111–165 (1941)

    Article  Google Scholar 

  2. Iwasaki, K., Omura, T.: Electron tomography of the supramolecular structure of virus-infected cells. Curr. Opin. Struct. Biol. 20, 632–639 (2010)

    Article  Google Scholar 

  3. Šiber, A., Lošdorfer Božič, A., Podgornik, R.: Energies and pressures in viruses: contribution of nonspecific electrostatic interactions. Phys. Chem. Chem. Phys. 14, 3746–3765 (2012)

    Google Scholar 

  4. Belyi, V.A., Muthukumar, M.: Electrostatic origin of genome packing in viruses. Proc. Natl. Acad. Sci. USA 103, 17174–17178 (2006)

    Article  ADS  Google Scholar 

  5. Kegel, W.K., van der Schoot, P.: Competing hydrophobic and screened-Coulomb interactions in hepatitis B virus capsid assembly. Biophys. J. 86, 3905–3913 (2004)

    Article  ADS  Google Scholar 

  6. Kegel, W.K., van der Schoot, P.: Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys. J. 91, 1501–1512 (2006)

    Article  ADS  Google Scholar 

  7. Lošdorfer Božič, A., Šiber, A., Podgornik, R.: Electrostatic self-energy of a partially formed spherical shell in salt solution: application to stability of tethered and fluid shells as models for viruses and vesicles. Phys. Rev. E 83, 041916 (2011)

    Article  ADS  Google Scholar 

  8. Marzec, C.J., Day, L.A.: Pattern formation in icosahedral virus capsids: the papovaviruses and Nudaurelia capensis β virus. Biophys. J. 65, 2559–2577 (1993)

    Article  ADS  Google Scholar 

  9. Prinsen, P., van der Schoot, P., Gelbart, W.M., Knobler, C.M.: Multishell structures of virus coat proteins. J. Phys. Chem. B 114, 5522–5533 (2010)

    Article  Google Scholar 

  10. Ting, C.L., Wu, J., Wang, Z.G.: Thermodynamic basis for the genome to capsid charge relationship in electrostatically-driven viral encapsidation. Proc. Natl. Acad. Sci. USA 108, 16986–16991 (2011)

    Article  ADS  Google Scholar 

  11. Šiber, A., Podgornik, R.: Role of electrostatic interactions in the assembly of empty spherical viral capsids. Phys. Rev. E 76, 061906 (2007)

    Article  ADS  Google Scholar 

  12. Zandi, R., van der Schoot, P., Reguera, D., Kegel, W., Reiss, H.: Classical nucleation theory of virus capsids. Biophys. J. 90, 1939–1948 (2006)

    Article  ADS  Google Scholar 

  13. Karlin, S., Brendel, V.: Charge configurations in viral proteins. Proc. Natl. Acad. Sci. USA 85, 9396–9400 (1988)

    Article  ADS  Google Scholar 

  14. Michen, B., Graule, T.: Isoelectric points in viruses. J. Appl. Microbiol. 109, 388–397 (2010)

    Google Scholar 

  15. Steinmetz, N., Manchester, M.: Viral Nanoparticles—Tools for Materials Science and Biomedicine. Pan Stanford Publishing (2011)

  16. Šiber, A., Zandi, R., Podgornik, R.: Thermodynamics of nanospheres encapsulated in virus capsids. Phys. Rev. E 81, 051919 (2010)

    Article  ADS  Google Scholar 

  17. Pichierri, F.: Quantum Proteomics. arXiv:1107.5853v1 [q-bio.BM] (2011)

  18. Finkelstein, A.V., Ptitsyn, O.B.: Protein Physics: A Course of Lectures. Academic Press (2002)

  19. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  20. Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, III, C.L., Reddy, V.S.: VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436–D442 (2009)

    Article  Google Scholar 

  21. Chen, V.B., Arendall III, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., Richardson, D.C.: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12–21 (2010)

    Google Scholar 

  22. Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  23. Betts, M.J., Russell, R.B.: Amino acid properties and consequences of substitutions. In: Barnes, M.R., Gray, I.C. (eds.) Bioinformatics for Geneticists (2003)

  24. The UniProt Consortium: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011)

    Article  Google Scholar 

  25. Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010)

    Article  Google Scholar 

  26. Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922 (1999)

    Google Scholar 

  27. Mannige, R.V., Brooks III, C.L.: Periodic table of virus capsids: implications for natural selection and design. PLoS ONE 5, e9423 (2010)

    Article  ADS  Google Scholar 

  28. Speir, J.A., Johnson, J.E.: Virus particle structure: nonenveloped viruses. In: Mahy, B.W.J., Regenmortel, M.H.V.V. (eds.) Encyclopedia of Virology, vol. 5, pp. 380–393, Oxford (2008)

  29. Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101, 15556–15560 (2004)

    Article  ADS  Google Scholar 

  30. Šiber, A., Podgornik, R.: Stability of elastic icosadeltahedral shells under uniform external pressure: application to viruses under osmotic pressure. Phys. Rev. E 79, 011919 (2009)

    Article  ADS  Google Scholar 

  31. Gunner, M.R., Mao, J., Song, Y., Kim, J.: Factors influencing the energetics of electron and proton transfers in proteins. Biochim. Biophys. Acta 1757, 942–968 (2006)

    Article  Google Scholar 

  32. Isom, D.G., Cannon, B.R., Castañeda, C.A., Robinson, A., Garcia-Moreno E., B.: High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc. Natl. Acad. Sci. USA 105, 17784–17788 (2008)

    Article  ADS  Google Scholar 

  33. Isom, D.G., Castañeda, C.A., Cannon, B.R., Velu, P.D., Garcia-Moreno E., B.: Charges in the hydrophobic interior of proteins. Proc. Natl. Acad. Sci. USA 107, 16096–16100 (2010)

    Article  ADS  Google Scholar 

  34. Hu, T., Zhang, R., Shklovskii, B.I.: Electrostatic theory of viral self-assembly. Physica A 387, 3059–3064 (2008)

    Article  ADS  Google Scholar 

  35. Šiber, A., Podgornik, R.: Nonspecific interactions in spontaneous assembly of empty versus functional single-stranded RNA viruses. Phys. Rev. E 78, 051915 (2008)

    Article  ADS  Google Scholar 

  36. Petsko, G.A., Ringe, D.: Protein Structure and Function. New Science Press (2004)

  37. Parsegian, V.A., Zemb, T.: Hydration forces: observations, explanations, expectations, questions. Curr. Opin. Colloid Interface Sci. 16, 618–624 (2011)

    Article  Google Scholar 

  38. Langlet, J., Gaboriaud, F., Gantzer, C., Duval, J.F.L.: Impact of chemical and structural anisotropy on the electrophoretic mobility of spherical soft multilayer particles: the case of bacteriophage MS2. Biophys. J. 94, 3293–3312 (2008)

    Article  ADS  Google Scholar 

  39. Pfeiffer, P., Herzog, M., Hirth, L.: RNA viruses: stabilization of brome mosaic virus. Phil. Trans. R. Soc. Lond. B. 276, 99–107 (1976)

    Article  ADS  Google Scholar 

  40. Felder, C.E., Prilusky, J., Silman, I., Sussman, J.L.: A server and database for dipole moments of proteins. Nucleic Acids Res. 35, W512–W521 (2007)

    Article  Google Scholar 

  41. Ni, P., Wang, Z., Ma, X., Das, N.C., Sokol, P., Chiu, W., Dragnea, B., Hagan, M., Kao, C.C.: An examination of the electrostatic interactions between the N-terminal tail of the brome mosaic virus coat protein and encapsidated RNAs. J. Mol. Biol. 419, 284–300 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

One of us (A.L.B.) thanks A. Ljubetič for introducing him to the Tcl scripting language in VMD.

A.L.B. acknowledges support from the Slovene Agency for Research and Development under a young researcher grant. A.Š. acknowledges support from the Ministry of Science, Education, and Sports of the Republic of Croatia (Grant No. 035-0352828-2837). R.P. acknowledges support from the Slovene Agency for Research and Development through research program P1-0055 and research project J1-4297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anže Lošdorfer Božič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lošdorfer Božič, A., Šiber, A. & Podgornik, R. How simple can a model of an empty viral capsid be? Charge distributions in viral capsids. J Biol Phys 38, 657–671 (2012). https://doi.org/10.1007/s10867-012-9278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9278-4

Keywords

Navigation