Skip to main content
Log in

Self-regulation in a minimal model of chemical self-replication

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In biological systems, regulation plays an important role in keeping metabolite concentrations within physiological ranges. To study the dynamical implications of self-regulation, we consider a functional form used in genetic networks and couple it to a mechanism associated with chemical self-replication. For the two-variable minimal model, we find that activation can yield chemical toggles similar to those reported for gene repression in E. coli as well as more complex dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Latchman, D.S.: Gene Regulation, 5th edn. Taylor and Francis, New York (2005)

    Google Scholar 

  2. Ptashne, M.: A Genetic Switch. Cold Spring Harbor Laboratory, Cold Spring Harbor (2004)

    Google Scholar 

  3. Ptashne M., Gann, A.: Genes and Signals. Cold Spring Harbor Laboratory, Cold Spring Harbor (2002)

    Google Scholar 

  4. Alon, U.: An Introduction to Systems Biology. Chapman and Hall, Boca Raton (2007)

    Google Scholar 

  5. Aguda, B.D., Friedman, A.: Models of Cellular Regulation. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  6. Goldbeter, A.: Biological rhythms as temporal dissipative structures. Adv. Chem. Phys. 135, 253–295 (2007)

    Article  Google Scholar 

  7. Rosenfeld, N., Elowitz, M.B., Alon, U.: Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002)

    Article  Google Scholar 

  8. Smolen, P., Baxter, D.A., Byrne, J.H.: Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)

    Article  Google Scholar 

  9. Ingolla, N.T., Murray, A.W.: Positive-feedback loops as a flexible biological module. Curr. Biol. 17, 668–677 (2007)

    Article  Google Scholar 

  10. Guido, N.J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C.R.: A bottom-up approach to gene regulation. Nature 439, 856–860 (2006)

    Article  ADS  Google Scholar 

  11. Atkinson, M.R., Savageau, M.A., Myers, J.T., Ninfa, A.J.: Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003)

    Article  Google Scholar 

  12. Cherry, J.L., Adler, F.R.: How to make a biological switch. J. Theor. Biol. 203, 117–133 (2000)

    Article  Google Scholar 

  13. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M., Elowitz, M.B.: An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006)

    Article  ADS  Google Scholar 

  14. Ferrell Jr., J.R.: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Chem. Biol. 6, 140–148 (2002)

    Google Scholar 

  15. Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. In: Weber, G. (ed.) Advances in Enzyme Regulation, vol. 3, pp. 425–438 (1965)

  16. Tyson, J.J.: Periodic enzyme synthesis: reconsideration of the theory of oscillatory repression. J. Theor. Biol. 80, 27–38 (1979)

    Article  MathSciNet  Google Scholar 

  17. Tyson, J.J.: Periodic enzyme synthesis and oscillatory repression: why is the period of oscillation close to the cell cycle time?. J. Theor. Biol. 103, 313–328 (1983)

    Article  Google Scholar 

  18. Tyson, J.J., Othmer, H.G.: The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol. 5, 1–62 (1978)

    Google Scholar 

  19. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Science 403, 339–342 (2000)

    Google Scholar 

  20. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Science 403, 335–338 (2000)

    Google Scholar 

  21. Rebek Jr., J.J.: Synthetic self-replicating molecules. Sci. Am. 271, 48–55 (1994)

    Article  ADS  Google Scholar 

  22. Tsai, L.L., Hutchison, G.H., Peacock-López, E.: Turing patterns in a self-replicating mechanism with self-complementary template. J. Chem. Phys. 113, 2003–2006 (2000)

    Article  ADS  Google Scholar 

  23. Peacock-López, E., Radov, D.B., Flesner, C.: Mixed-mode oscillations in a template mechanism. Biophys. Chem. 65, 171–178 (1997)

    Article  Google Scholar 

  24. Peacock-López, E.: Chemical oscillations: the Templator Model. Chem. Educ. 6, 202–209 (2001)

    Article  Google Scholar 

  25. Beutel, K.M., Peacock-López, E.: Chemical oscillations and Turing patterns in a generalized two-variable model of chemical self-replication. J. Chem. Phys. 125, 024908 (2006)

    Article  Google Scholar 

  26. Chung, J.M., Peacock-López, E.: Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross-diffusion. J. Chem. Phys. 127, 174003 (2007)

    Google Scholar 

  27. Chung, J.M., Peacock-López, E.: Cross-diffusion in the Templator model of chemical self-replication. Phys. Lett A. 371, 41–47 (2007)

    Article  ADS  Google Scholar 

  28. Beutel, K.M., Peacock-López, E.: Complex dynamics in a cross-catalytic self-replication mechanism. J. Chem. Phys. 126, 125104 (2007)

    Article  ADS  Google Scholar 

  29. Beutel, K.M., Peacock-López, E.: Chemical oscillations: two-variable chemical models. Chem. Educ. 12, 224–235 (2007)

    Google Scholar 

  30. McGhee, E.A., Peacock-López, E.: An introduction to Turing patterns in nonlinear chemical kinetics. Chem. Educ. 10, 84–94 (2005)

    Google Scholar 

  31. Gray, P., Scott, S.K.: Chemical Oscillations and Instabilities. Oxford University Press, Oxford (1990)

    Google Scholar 

  32. Widder, S., Schicho, J., Schuster, P.: Dynamic patterns of gene regulation I: simple two-gene system. J. Theor. Biol. 246, 395–419 (2007)

    Article  MathSciNet  Google Scholar 

  33. Hasty, J., McMillen, D., Isaacs, F., Collins, J.J.: Computational studies of gene regulatory networks: in numero molecular biology. Nature Rev. Gen. 2, 268–279 (2001)

    Article  Google Scholar 

  34. Hasty, J., Issacs, F., Dolnik, M., McMillen, D., Collins, J.J.: Designer gene networks: towards fundamental cellular control. Chaos 11, 207–220 (2001)

    Article  ADS  MATH  Google Scholar 

  35. van Riel, N.A.W.: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief. Bioinform. 7, 364–374 (2006)

    Article  Google Scholar 

  36. Ferrell, J.E., Pomeranian, J.R., Kim, S.Y., Tunnel, N.B., Xing, W., Huang, C-Y.F., Machete, E.M.: Simple, realistic models of complex biological processes: positive feedback and bistability in a cell fate switch and a cell cycle oscillator. EBS Lett. 583, 3999-4005 (2009)

    Google Scholar 

  37. Kobayashi, T., Chen, L., Sahara, K.: Modeling genetic switches with positive feedback loops. J. Theor. Biol. 221, 379–399 (2003)

    Article  Google Scholar 

  38. Zhdanov, V.P.: Kinetic models of gene regulation including non-coding RNAs. Phys. Rep. 500, 1–42 (2011)

    Article  ADS  Google Scholar 

  39. Goh, K.-I.I., Kahng, B., Cho, K.-H.: Sustained oscillations in extended genetic oscillatory systems. Biophys. J. 94, 4270–4276 (2008)

    Article  ADS  Google Scholar 

  40. Isaacs, F.J., Hasty, J., Cantor, C.R., Collins, J.J.: Prediction and measurement of autoregulatory genetic module. Proc. Natl. Acad. Sci. U.S.A. 100, 7714–7719 (2003)

    Article  ADS  Google Scholar 

  41. Goldbeter, A., Gonze, D., Houart, G., Leloup, J.-C., Halloy, J., Dupont, G.: From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11, 247–250 (2001)

    Article  ADS  MATH  Google Scholar 

  42. Ichinose, N., Yada, T., Gotoh, O., Aihara, K.: Reconstruction of transcription-translation dynamics with a model of gene networks. J. Theor. Biol. 255, 378–386 (2008)

    Article  Google Scholar 

  43. Mileyko, Y., Joh, R.I., Weitz, J.S.: Small-scale copy number variation and large-scale changes in gene expression. Proc. Natl. Acad. Sci. U.S.A. 105, 16659–16664 (2008)

    Article  ADS  Google Scholar 

  44. Muller, S., Hofbauer, J., Endler, L.: A generalized model of the repressilator. J. Math. Biol. 53, 905–937 (2006)

    Article  MathSciNet  Google Scholar 

  45. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovaskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  ADS  Google Scholar 

  46. Paul, N., Joyce, G.F.: A self-replicating ligase ribozyme. Proc. Natl. Acad. Sci. U.S.A. 99, 12733–12740 (2002)

    Article  ADS  Google Scholar 

  47. Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009)

    Article  ADS  Google Scholar 

  48. Murray, J.D.: Mathematical Biology II, 3rd. edn. Springer, Berlin (2003)

    Google Scholar 

  49. Epstein, I.R., Pojman, J.A.: Introduction to Nonlinear Chemical Dynamics, Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York (1998)

    Google Scholar 

  50. Edelstein-Keshet, L.: Mathematical Models in Biology. Random House, New York (1988)

    MATH  Google Scholar 

  51. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison Wesley, Reading (1994)

    Google Scholar 

  52. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  53. Portle, S., Iadevaia, S., San, K.-Y., Bennett, G.N., Mantzaris, N.: Environmentally-modulated changes in fluorescence distribution in cells with oscillatory genetic network dynamics. J. Biotechnol. 140, 203–217 (2009)

    Article  Google Scholar 

  54. Poincaré, H.: Le Méthodes Nouvelles de la Mécanique Céleste, vol. I. Gauthier-Villars, Paris (1892)

  55. Andronov, A.A., Witt, A.: Sur la theorie mathematique des autooscillations. C. R. Acad. Sci. Paris 190, 256–258 (1930)

    Google Scholar 

  56. Hopf, E.: Abzweigung einer periodischen Losung von einer stationaren Losung eines Differetialsystems. Ber. Math.-Phys. Kl. Sachs, Acad. Wiss. Leipzig 94, 1–22 (1942)

    Google Scholar 

  57. Guckenheimer, J.: Numerical analysis of dynamical systems. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 2, pp. 345–390. Elsevier, New York (2002)

    Chapter  Google Scholar 

  58. Fung, E., Wong, W.W., Suen, J.K., Butlter, T., Lee, S.-G., Liao, J.C.: A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005)

    Article  ADS  Google Scholar 

  59. Schõffl, F., Prãndl, R., Reindl, A.: Regulation of the heat-shock response. Plant Physiol. 117, 1135–1141 (1998)

    Article  Google Scholar 

  60. Morimoto, R.I.: Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410 (1993)

    Article  ADS  Google Scholar 

  61. Morimoto, R.I., Sarge, K.D., Abravaya, K.: Transcriptional regulation of heat shock genes. J. Biol. Chem. 267, 21987–21990 (1992)

    Google Scholar 

  62. Joyce, G.F.: A glimpse of biology’s first enzyme. Science 315, 1507–1508 (2007)

    Article  Google Scholar 

  63. Kim, D.-E., Joyce, G.F.: Cross-catalytic replication of an RNA ligase ribozyme. Chem. Biol. 11, 1505–1512 (2004)

    Article  Google Scholar 

  64. Tang, M.: The mean frequency of transcriptional bursting and its variation in single cells. J. Math. Biol. 98, 27–58 (2010)

    Article  Google Scholar 

  65. Singh, A., Razooky, B., Cox, C., Simpson, M.L., Weinberget, L.S.: Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98, L32–L34 (2010)

    Article  Google Scholar 

  66. Pedroza, J.M., Paulson, J.: Effects of molecular memory and bursting on fluctuations in gene expression. Science 319, 339–343 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of us (EPL) would like to thank Professor Allen Rodgers, and the Chemistry Department of the University of Cape Town for their hospitality during my sabbatical leave. The authors would also like to thank Paola P. Freidrich and Alex Y. Peacock-Villada for helpful comments, and Williams College and the National Science Foundation (CHE-0911380) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Peacock-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, S.J., Peacock-López, E. Self-regulation in a minimal model of chemical self-replication. J Biol Phys 38, 349–364 (2012). https://doi.org/10.1007/s10867-011-9252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9252-6

Keywords

Navigation