Skip to main content
Log in

Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–511 (1999)

    Article  MathSciNet  Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  3. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  ADS  Google Scholar 

  4. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

  5. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide web. Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  6. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281, 69–77 (2000)

    Article  ADS  Google Scholar 

  7. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  ADS  Google Scholar 

  8. Goh, K., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. U. S. A. 104, 8685–8690 (2007)

    Article  ADS  Google Scholar 

  9. Chen, B., Xian, Y., Wei, F.: The evolutionary network study of tRNA sequences. Acta Biophysica Sinica 25, 117 (2009). In Chinese

    Google Scholar 

  10. Wei, F., Li, S., Ma, H.: Network of tRNA gene sequences. J. Shanghai Jiaotong Univ. (Sci.) 13, 611–616 (2008)

    Article  Google Scholar 

  11. Song, N., Joseph, J.M., Davis, G.B., Durand, D.: Sequence similarity network reveals common ancestry of multidomain proteins. Comput. Biol. 4, 1–19 (2008)

    MathSciNet  Google Scholar 

  12. Eigen, M., Winkler-Oswatitsch, R.: Transfer-RNA: the early adaptor. Naturwissenschaften 68, 217–228 (1981)

    Article  ADS  Google Scholar 

  13. Saks, M.E., Sampson, J.R., Abelson, J.: Evolution of a transfer RNA gene through a point mutation in the anticodon. Science 279, 1665–1667 (1998)

    Article  ADS  Google Scholar 

  14. Rodriguez-Vargas, A.M., Fajardo, J.E., Ramirez, B.C.: Phylogeny of transfer RNA. Orig. Life 14, 547–555 (1984)

    Article  ADS  Google Scholar 

  15. Soto, M.A., Toha, J.: Phylogenetic tree of tRNAs using a simple algorithm. Orig. Life Evol. Biosph. 20, 161–166 (1990)

    Article  ADS  Google Scholar 

  16. Farias, S.T., Guimaraes, R.C.: Aminoacyl-tRNA synthetase classes and groups in prokaryotes. J. Theor. Biol. 250, 221–229 (2008)

    Article  Google Scholar 

  17. Wei, F., Meng, M., Li, S., Ma, H.: Comparing two evolutionary mechanisms of modern tRNAs. Mol. Phylogenet. Evol. 38, 1–11 (2006)

    Article  Google Scholar 

  18. Sprinzl, M., Horn, C., Brown, M., Steinberg, S.: Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998)

    Article  Google Scholar 

  19. Sprinzl, M., Vassilenko, K.S.: Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 33, 139–140 (2005)

    Article  Google Scholar 

  20. Jühling, F., Mörl, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F., Pütz, J.: tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, 159–162 (2009)

    Article  Google Scholar 

  21. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  22. Wei, F., Li, S., Ma, H.: Computer simulation of tRNA evolution. J. Phys. A: Math. Theor. 42, 345101 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by Guangxi Natural Science Foundation (No. 0728003), National Natural Science Foundation of China (Nos. 10662002, 10865001), the Graduate Student Innovation Program of Guangxi Zhuang Autonomous Region (Grant No. T32070), and the 973 Program (2010CB328204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangping Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F., Chen, B. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks. J Biol Phys 38, 241–250 (2012). https://doi.org/10.1007/s10867-011-9236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9236-6

Keywords

Navigation