Abstract
The purpose of this paper is to develop a method for calculating organelle transport in dendrites with a non-uniform cross-sectional area that depends on the distance from the neuron soma. The model is based on modified Smith–Simmons equations governing molecular motor-assisted organelle transport. The developed method is then applied to simulating organelle transport in branching dendrites with two particular microtubule (MT) orientations reported from experiments. It is found that the rate of organelle transport toward a dendrite’s growth cone heavily depends on the MT orientation, and since there is experimental evidence that the MT orientation in a particular region of a dendrite may depend on the dendrite’s developmental stage, the obtained results suggest that a rearrangement of the MT structure may depend on the amount of organelles needed at the growth cone.






Similar content being viewed by others
References
Vallee, R.B., Bloom, G.S.: Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 59–92 (1991)
Holzbaur, E.L.F.: Axonal transport and neurodegenerative disease. In: St. George-Hyslop, P. et al. (eds.) Intracellular Traffic and Neurodegenerative Disorders, pp. 27–39. Springer, Berlin (2009)
Linial, M.: The secrets of a functional synapse—from a computational and experimental viewpoint. BMC Bioinformatics 7, S6 (2006)
Rolls, M.M., Satoh, D., Clyne, P.J., Henner, A.L., Uemura, T., Doe, C.Q.: Polarity and compartmentalization of Drosophila neurons. Neural Development 2, 7 (2007)
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2008)
Bartlett, W.P., Banker, G.A.: An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. J. Neurosci. 4, 1944–1953 (1984)
Baas, P.W., Deitch, J.S., Black, M.M., Banker, G.A.: Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. U. S. A. 85, 8335–8339 (1988)
Takahashi, D., Yu, W., Baas, P.W., Kawai-Hirai, R., Hayashi, K.: Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons. Cell Motil. Cytoskelet. 64, 347–359 (2007)
Stone, M.C., Roegiers, F., Rolls, M.M.: Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell. 19, 4122–4129 (2008)
Gao, F.-B.: Molecular and cellular mechanisms of dendritic morphogenesis. Curr. Opin. Neurobiol. 17, 525–532 (2007)
Cuntz, H., Forstner, F., Haag, J., Borst, A.: The morphological identity of insect dendrites. PLoS Computational Biology 4, e1000251 (2008)
Kuznetsov, A.V.: Modeling active transport in Drosophila unipolar motor neurons. Comput. Methods Biomech. Biomed. Eng. (submitted)
Kuznetsov, A.V.: Method of modeling intracellular transport in branching neurites: application to axons and dendrites of Drosophila sensory neurons. Comput. Methods Biomech. Biomed. Eng. doi:10.1080/10255841003664727
Smith, D.A., Simmons, R.M.: Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)
Kuznetsov, A.V., Hooman, K.: Modeling traffic jams in intracellular transport in axons. Int. J. Heat Mass Transfer 51, 5695–5699 (2008)
Kuznetsov, A.V., Avramenko, A.A.: A minimal hydrodynamic model for a traffic jam in an axon. Int. Commun. Heat Mass Transf. 36, 1–5 (2009)
Kuznetsov, A.V., Avramenko, A.A.: A macroscopic model of traffic jams in axons. Math. Biosci. 218, 142–152 (2009)
Kuznetsov, A.V.: Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport. Comput. Methods Biomech. Biomed. Eng. (2010, in press)
Kuznetsov, A.V.: Effect of vesicle traps on traffic jam formation in fast axonal transport. Math. Biosci. (2010, in press)
Jung, P., Brown A.: Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Physical Biology 6, 046002 (2009).
White, F.M.: Fluid Mechanics, 6th edn. McGraw-Hill, Boston (2008)
Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)
Vale, R.D., Funatsu, T.S., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996)
King, S.J., Schroer, T.A.: Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000)
Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y., Higuchi, H.: Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. U. S. A. 103, 5741–5745 (2006)
Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R.: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005)
Hill, D.B., Plaza, M.J., Bonin, K., Holzwarth, G.: Fast vesicle transport in PC12 neurites: velocities and forces. Eur. Biophys. J. 33, 623–632 (2004)
Beeg, J., Klumpp, S., Dimova, R., Serral Gracià, R.S., Unger, E., Lipowsky, R.: Transport of beads by several kinesin motors. Biophys. J. 94, 532–541 (2008)
Leduc, C., Campàs, O., Zeldovich, K.B., Roax, A., Jolimaitre, P., Bourel-Bonnet, L., Goud, B., Joanny, J.F., Bassereau, P., Prost, J.: Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. U. S. A. 101, 17,096–17,101 (2004)
Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motor. Nat. Cell Biol. 2, 718–723 (2000)
Reck-Peterson, S.L., Yildiz, A., Carter, A.P., Gennerich, A., Zhang, N., Vale, R.D.: Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006)
Erez, H., Malkinson, G., Prager-Khoutorsky, M., De Zeeuw, C.I., Hoogenraad, C.C., Spira, M.E.: Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol. 176, 497–507 (2007)
Erez, H., Spira, M.E.: Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones. J. Comp. Neurol. 507, 1019–1030 (2008)
Shemesh, O.A., Erez, H., Ginzburg, I., Spira, M.E.: Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9, 458–471 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kuznetsov, A.V. Modeling organelle transport in branching dendrites with a variable cross-sectional area. J Biol Phys 36, 385–403 (2010). https://doi.org/10.1007/s10867-010-9191-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10867-010-9191-7


