Skip to main content
Log in

Modeling organelle transport in branching dendrites with a variable cross-sectional area

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop a method for calculating organelle transport in dendrites with a non-uniform cross-sectional area that depends on the distance from the neuron soma. The model is based on modified Smith–Simmons equations governing molecular motor-assisted organelle transport. The developed method is then applied to simulating organelle transport in branching dendrites with two particular microtubule (MT) orientations reported from experiments. It is found that the rate of organelle transport toward a dendrite’s growth cone heavily depends on the MT orientation, and since there is experimental evidence that the MT orientation in a particular region of a dendrite may depend on the dendrite’s developmental stage, the obtained results suggest that a rearrangement of the MT structure may depend on the amount of organelles needed at the growth cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vallee, R.B., Bloom, G.S.: Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 59–92 (1991)

    Article  Google Scholar 

  2. Holzbaur, E.L.F.: Axonal transport and neurodegenerative disease. In: St. George-Hyslop, P. et al. (eds.) Intracellular Traffic and Neurodegenerative Disorders, pp. 27–39. Springer, Berlin (2009)

    Chapter  Google Scholar 

  3. Linial, M.: The secrets of a functional synapse—from a computational and experimental viewpoint. BMC Bioinformatics 7, S6 (2006)

    Article  Google Scholar 

  4. Rolls, M.M., Satoh, D., Clyne, P.J., Henner, A.L., Uemura, T., Doe, C.Q.: Polarity and compartmentalization of Drosophila neurons. Neural Development 2, 7 (2007)

    Article  Google Scholar 

  5. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 5th edn. Garland Science, New York (2008)

    Google Scholar 

  6. Bartlett, W.P., Banker, G.A.: An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. J. Neurosci. 4, 1944–1953 (1984)

    Google Scholar 

  7. Baas, P.W., Deitch, J.S., Black, M.M., Banker, G.A.: Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. U. S. A. 85, 8335–8339 (1988)

    Article  ADS  Google Scholar 

  8. Takahashi, D., Yu, W., Baas, P.W., Kawai-Hirai, R., Hayashi, K.: Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons. Cell Motil. Cytoskelet. 64, 347–359 (2007)

    Article  Google Scholar 

  9. Stone, M.C., Roegiers, F., Rolls, M.M.: Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell. 19, 4122–4129 (2008)

    Article  Google Scholar 

  10. Gao, F.-B.: Molecular and cellular mechanisms of dendritic morphogenesis. Curr. Opin. Neurobiol. 17, 525–532 (2007)

    Article  Google Scholar 

  11. Cuntz, H., Forstner, F., Haag, J., Borst, A.: The morphological identity of insect dendrites. PLoS Computational Biology 4, e1000251 (2008)

    Article  Google Scholar 

  12. Kuznetsov, A.V.: Modeling active transport in Drosophila unipolar motor neurons. Comput. Methods Biomech. Biomed. Eng. (submitted)

  13. Kuznetsov, A.V.: Method of modeling intracellular transport in branching neurites: application to axons and dendrites of Drosophila sensory neurons. Comput. Methods Biomech. Biomed. Eng. doi:10.1080/10255841003664727

  14. Smith, D.A., Simmons, R.M.: Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45–68 (2001)

    Article  ADS  Google Scholar 

  15. Kuznetsov, A.V., Hooman, K.: Modeling traffic jams in intracellular transport in axons. Int. J. Heat Mass Transfer 51, 5695–5699 (2008)

    Article  MATH  Google Scholar 

  16. Kuznetsov, A.V., Avramenko, A.A.: A minimal hydrodynamic model for a traffic jam in an axon. Int. Commun. Heat Mass Transf. 36, 1–5 (2009)

    Article  Google Scholar 

  17. Kuznetsov, A.V., Avramenko, A.A.: A macroscopic model of traffic jams in axons. Math. Biosci. 218, 142–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuznetsov, A.V.: Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport. Comput. Methods Biomech. Biomed. Eng. (2010, in press)

  19. Kuznetsov, A.V.: Effect of vesicle traps on traffic jam formation in fast axonal transport. Math. Biosci. (2010, in press)

  20. Jung, P., Brown A.: Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Physical Biology 6, 046002 (2009).

    Article  ADS  Google Scholar 

  21. White, F.M.: Fluid Mechanics, 6th edn. McGraw-Hill, Boston (2008)

    Google Scholar 

  22. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  ADS  Google Scholar 

  23. Vale, R.D., Funatsu, T.S., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996)

    Article  ADS  Google Scholar 

  24. King, S.J., Schroer, T.A.: Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000)

    Article  Google Scholar 

  25. Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y., Higuchi, H.: Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. U. S. A. 103, 5741–5745 (2006)

    Article  ADS  Google Scholar 

  26. Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R.: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308, 1469–1472 (2005)

    Article  ADS  Google Scholar 

  27. Hill, D.B., Plaza, M.J., Bonin, K., Holzwarth, G.: Fast vesicle transport in PC12 neurites: velocities and forces. Eur. Biophys. J. 33, 623–632 (2004)

    Article  Google Scholar 

  28. Beeg, J., Klumpp, S., Dimova, R., Serral Gracià, R.S., Unger, E., Lipowsky, R.: Transport of beads by several kinesin motors. Biophys. J. 94, 532–541 (2008)

    Article  Google Scholar 

  29. Leduc, C., Campàs, O., Zeldovich, K.B., Roax, A., Jolimaitre, P., Bourel-Bonnet, L., Goud, B., Joanny, J.F., Bassereau, P., Prost, J.: Cooperative extraction of membrane nanotubes by molecular motors. Proc. Natl. Acad. Sci. U. S. A. 101, 17,096–17,101 (2004)

    Google Scholar 

  30. Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motor. Nat. Cell Biol. 2, 718–723 (2000)

    Article  Google Scholar 

  31. Reck-Peterson, S.L., Yildiz, A., Carter, A.P., Gennerich, A., Zhang, N., Vale, R.D.: Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006)

    Article  Google Scholar 

  32. Erez, H., Malkinson, G., Prager-Khoutorsky, M., De Zeeuw, C.I., Hoogenraad, C.C., Spira, M.E.: Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol. 176, 497–507 (2007)

    Article  Google Scholar 

  33. Erez, H., Spira, M.E.: Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones. J. Comp. Neurol. 507, 1019–1030 (2008)

    Article  Google Scholar 

  34. Shemesh, O.A., Erez, H., Ginzburg, I., Spira, M.E.: Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9, 458–471 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V. Modeling organelle transport in branching dendrites with a variable cross-sectional area. J Biol Phys 36, 385–403 (2010). https://doi.org/10.1007/s10867-010-9191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9191-7

Keywords