Skip to main content
Log in

Isoprenaline increases the slopes of restitution trajectory in the conscious rabbit with ischemic heart failure

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Roughly speaking, restitution is the dependence of recovery time of cardiac electrical activity on heart rate. Increased restitution slope is theorized to be predictive of sudden death after heart injury such as from coronary artery occlusion (ischemia). Adrenaline analogs are known to increase restitution slope in normal hearts, but their effects in failing hearts are unknown. Twenty-six rabbits underwent coronary ligation (n = 15) or sham surgery (n = 11) and implantation of a lead in the heart for recording electrocardiograms. Eight weeks later, unanesthetized rabbits were given 0.25–2.0 ml of 1 μmol/L isoprenaline intravenously, which increased heart rate. Heart rate was quantified by time between QRS peaks (RR) and heart activity duration by R to T peak time (QTp). Ligated rabbits (n = 6) had lower ejection fraction than sham rabbits (n = 7, p < 0.0001) indicative of heart failure, but similar baseline RR (269 ± 15 vs 292 ± 23 ms, p = 0.07), QTp (104 ± 17 vs 91 ± 9 ms, p = 0.1), and isoprenaline-induced minimum RR (204 ± 11 vs 208 ± 6 ms, p = 0.4). The trajectory of QTp vs TQ plots displayed hysteresis and regions of negative slope. The slope of the positive slope region was >1 in ligated rabbits (1.27 ± 0.66) and <1 in sham rabbits (0.35 ± 0.14, p = 0.004). The absolute value of the negative slope was greater in ligated rabbits (− 0.81 ± 0.52 vs − 0.35 ± 0.14, p = 0.04). Isoprenaline increased heart rate and slopes of restitution trajectory in failing hearts. The dynamics of restitution trajectory may hold clues for sudden death in heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Ventricular fibrillation is an irregular rhythm of the heart which is a major cause of sudden death. Ventricular tachycardia is a fast periodic rhythm that frequently leads to ventricular fibrillation.

  2. Adrenaline is one of the naturally occurring hormones in the body that causes heart rate to increase by stimulating receptors in the heart, one of which is the beta-adrenergic receptor. Ischaemia means lack of blood flow, such as from clogged arteries. Ischaemia stresses or injures tissue.

  3. To apply nonlinear dynamical theory, restitution slope must be calculated using the diastolic interval as the independent variable, and not beat to beat interval. That said, in steady state pacing experiments, the choice of independent variable does not affect the slope value because the restitution curve is merely shifted horizontally by a constant.

Abbreviations

ECG:

electrocardiogram

RR:

time from R peak to R peak on electrocardiogram

References

  1. Maison-Blanche, P., Coumel, P.: Changes in repolarization dynamicity and the assessment of the arrhythmic risk. PACE 20, 2614–2624 (1997)

    Google Scholar 

  2. Moleiro, F., Misticchio, F., Castellanos, A., Myerburg, R.J.: Paradoxical behavior of the QT interval during exercise and recovery and its relationship with cardiac memory. Clin. Cardiol. 22, 413–416 (1999)

    Article  Google Scholar 

  3. Fauchier, L., Babuty, D., Poret, P., Autret, M.L., Cosnay, P., Fauchier, J.P.: Effect of verapamil on QT interval dynamicity. Am. J. Cardiol. 83, 807–808 (1999)

    Article  Google Scholar 

  4. Weiss, J.N., Garfinkel, A., Karagueuzian, H.S., Qu, Z., Chen, P.-S.: Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 99, 2819–2826 (1999)

    Google Scholar 

  5. Guevara, M.R., Ward, G., Shrier, A., Glass, L.: Electrical alternans and period-doubling bifurcations. IEEE Comp. Cardiol. 562, 167–170 (1984)

    Google Scholar 

  6. Chialvo, D.R., Gilmour, R.F., Jalife, J.: Low dimensional chaos in cardiac tissues. Nature 343, 653–657 (1990)

    Article  ADS  Google Scholar 

  7. Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos. 4, 461–472 (1994)

    Article  ADS  Google Scholar 

  8. Watanabe, M., Otani, N.F., Gilmour, R.F. Jr.: Biphasic restitution of action potential duration and complex dynamics in ventricular myocardium. Circ. Res. 76, 915–921 (1995)

    Google Scholar 

  9. Koller, M.L., Riccio, M.L., Gilmour, R.F. Jr.: Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am. J. Physiol. 275, H1635–1642 (1998)

    Google Scholar 

  10. Riccio, M.L., Koller, M.L., Gilmour, R.F., Jr.: Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ. Res. 84, 955–963 (1999)

    Google Scholar 

  11. Garfinkel, A., Kim, Y.-H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.-H., Karagueuzian, H.S., Weiss, J.N., Chen, P.-S.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U. S. A. 97, 6061–6066 (2000)

    Article  ADS  Google Scholar 

  12. Chevalier, P., Burri, H., Adeleine, P., Kirkorian, G., Lopez, M., Leizorovicz, A., André-Fouët, X., Chapon, P., Rubel, P., Touboul, P.: QT dynamicity and sudden death after myocardial infarction: results of a long-term follow-up study. J. Cardiovasc. Electrophysiol. 14, 227–233 (2003)

    Google Scholar 

  13. Milliez, P., Leenhardt, A., Maison-Blanche, P., Vicaut, E., Badilini, F., Siliste, C., Benchetrit, C., Coumel, P.: Usefulness of ventricular repolarization dynamicity in predicting arrhythmic deaths in patients with ischemic cardiomyopathy (from the European Myocardial Infarct Amiodarone Trial). Am. J. Cardiol. 95, 821–826 (2005)

    Article  Google Scholar 

  14. Merri, M., Moss, A.J., Benhorin, J., Locati, E., Alberti, M., Badilini, F.: Relation between ventricular repolarization duration and cardiac cycle length during 24-hour holter recordings. Circulation 85, 1816–1821 (1992)

    Google Scholar 

  15. Tavernier, R., Jordaens, L., Haerynck, F., Derycke, E., Clement, D.L.: Changes in the QT interval and its adaptation to rate, assessed with continuous electrocardiographic recordings in patients with ventricular fibrillation, as compared to normal individuals without arrhythmias. Eur. Heart J. 18, 994–999 (1997)

    Google Scholar 

  16. Smetana, P., Pueyo, E., Hnatkova, K., Batchvarov, V., Laguna, P., Malik, M.: Individual patterns of dynamic QT/RR relationship in survivors of acute myocardial infarction and their relationship to antiarrhythmic efficacy of amiodarone. J. Cardiovasc. Electrophysiol. 15, 1147–1154 (2004)

    Article  Google Scholar 

  17. Marchlinski, F.E., Cain, M.E., Falcone, R.A., Corky, R.F., Spear, J.F., Josephson, M.E.: Effects of infarction, procainamide, coupling interval and cycle length on refractoriness of extrastimuli. Am. J. Physiol. 248, H606–613 (1985)

    Google Scholar 

  18. Kieran, E.B., Coote, J.H., Ng, G.A.: Is electrical restitution the key determinant in ventricular fibrillation initiation? Electrophysiological studies on the effects of autonomic stimulation on isolated rabbit hearts. Circulation 104, II–48 (2001)

    Google Scholar 

  19. Taggart, P., Sutton, P., Simon, R., Eliot, D., Gill, J.: Effect of beta-adrenergic stimulation on the action potential restitution curve in humans. Circulation 104, II–48 (2001)

    Google Scholar 

  20. Lown, B., Verrier, R.L.: Neural activity and ventricular fibrillation. N. Engl. J. Med. 294, 1165–1170 (1976)

    Article  Google Scholar 

  21. Zipes, D.P., Miyazaki, T.: The autonomic nervous system and the heart. Basis for understanding interactions and effects on arrhythmia development. In: Zipes, D.P., Jalife, J. (eds.) Cardiac Electrophysiology: From Cell to Bedside, p. 312. Saunders, Philadelphia (1990)

    Google Scholar 

  22. Kent, K.M., Smith, E.R., Redwood, D.R., Epstein, S.E.: Electrical stability of acutely ischemic myocardium. Influences of heart rate and vagal stimulation. Circulation 47, 291–298 (1973)

    Google Scholar 

  23. Vanoli, E., De Ferrari, G.M., Stramba-Badiale, M., Hull, S.S. Jr., Foreman, R.D., Schwartz, P.J.: Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res. 68, 1471–1478 (1991)

    Google Scholar 

  24. Watanabe, M.A.: Standard restitution curves during action potential duration alternans. Heart Rhythm 3, 720–721 (2006)

    Article  Google Scholar 

  25. Pye, M.P., Black, M., Cobbe, S.M.: Comparison of in vivo and in vitro haemodynamic function in experimental heart failure: use of echocardiography. Cardiovasc. Res. 31(6), 873–881 (1996)

    Google Scholar 

  26. Pye, M.P., Cobbe, S.M.: Arrhythmogenesis in experimental models of heart failure: the role of increased load. Cardiovasc. Res. 32(2), 248–257 (1996)

    Article  Google Scholar 

  27. Ng, G.A., Cobbe, S.M., Smith, G.L.: Non-uniform prolongation of intracellular Ca 21 transients recorded from the epicardial surface of isolated hearts from rabbits with heart failure. Cardiovasc. Res. 37, 489–502 (1998)

    Article  Google Scholar 

  28. McIntosh, M.A., Cobbe, S.M., Smith, G.L.: Heterogeneous changes in action potential and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. Cardiovasc. Res. 45(2), 397–409 (2000)

    Article  Google Scholar 

  29. Manley, B.S., Chong, E.M.F., Walton, C., Economides, A.P., Cobbe, S.M.: An animal model for the chronic study of ventricular repolarisation and refractory period. Cardiovasc. Res. 23, 16–20 (1989)

    Article  Google Scholar 

  30. Mendez, C., Gruhzit, C.C., Moe, G.K.: Influence of cycle length upon refractory period of auricles, ventricles, and A–V node in the dog. Am. J. Physiol. 184, 287–295 (1956)

    Google Scholar 

  31. Boyett, M.R., Jewell, B.R.: A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle. J. Physiol. 285, 359–380 (1978)

    Google Scholar 

  32. Elharrar, V., Surawicz, B.: Cycle length effect on restitution of action potential duration in dog cardiac fibers. Am. J. Physiol. 244, H782–H792 (1983)

    Google Scholar 

  33. Hoffman, B.F., Suckling, E.E.: Effect of heart rate on cardiac membrane potentials and the unipolar electrogram. Am. J. Physiol. 179, 123–130 (1954)

    Google Scholar 

  34. Bazett, H.C.: An analysis of the time relationship of electrocardiograms. Heart 7, 353–370 (1920)

    Google Scholar 

  35. Watanabe, M.A., Koller, M.L.: A mathematical analysis of the dynamics of cardiac memory and accommodation. Theory and experiment. Am. J. Physiol. 282, H1534–H1547 (2002)

    Google Scholar 

  36. Kalb, S.S., Dobrovolny, H.M., Tolkacheva, E.G., Idriss, S.F., Krassowska, W., Gauthier, D.J.: The restitution portrait: a new method for investigating rate-dependent restitution. J. Cardiovasc. Electrophysiol. 15, 698–709 (2004)

    Article  Google Scholar 

  37. Lux, R.L., Ershler, P.R.: Cycle length sequence dependent repolarization dynamics. J. Electrocardiol. 36 Suppl, 205–208 (2003)

    Article  Google Scholar 

  38. Hall, G.M., Bahar, S., Gauthier, D.J.: Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82, 2995–2998 (1999)

    Article  ADS  Google Scholar 

  39. Neilson, J.M.: Dynamic QT interval analysis. In: Osterhues, H.H., Hombach, V., Moss, A.J. (eds.) Advances in Non-invasive Electrocardiographic Monitoring Techniques. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  40. Lang, C.C.E., Flapan, A.C., Neilson, J.M.M.: The impact of QT lag compensation on dynamic assessment of ventricular repolarization: reproducibility and the impact of lead selection. PACE 24, 366–373 (2001)

    Google Scholar 

  41. Pueyo, E., Smetana, P., Laguna, P., Malik, M.: Estimation of the QT/RR hysteresis lag. J. Electrocardiol. 36, 187–190 (2003)

    Article  Google Scholar 

  42. Fossa, A.A.: The impact of varying autonomic states on the dynamic beat-to-beat QT–RR and QT–TQ interval relationships. Br. J. Pharmacol. 154, 1508–1515 (2008)

    Article  Google Scholar 

  43. Vick, R.L.: Action potential duration in canine Purkinje tissue: effects of preceding excitation. J. Electrocardiol. 4(2),105–115 (1971)

    Article  MathSciNet  Google Scholar 

  44. Biberman, L., Sarma, R.N., Surawicz, B.: T-wave abnormalities during hyperventilation and isoproterenol infusion. Am. Heart J. 81, 166–174 (1971)

    Article  Google Scholar 

  45. Giotti, A., Ledda, F., Mannaioni, P.F.: Effects of noradrenaline and isoprenaline, in combination with α- and β-receptor blocking substances, on the action potential of cardiac Purkinje fibres. J. Physiol. 229, 99–113 (1973)

    Google Scholar 

  46. Murayama, M., Mashima, S., Shimomura, K., Takayanagi, K., Tseng, Y.Z., Murao, S.: An experimental model of giant negative T wave associated with QT prolongation produced by combined effect of calcium and isoproterenol. Jpn. Heart J. 22, 257–265 (1981)

    Google Scholar 

  47. Martins, J.B., Zipes, D.P.: Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ. Res. 46, 100–110 (1980)

    Google Scholar 

  48. Murayama, M., Harumi, K., Mashima, S., Shimomura, K., Murao, S.: Prolongation of ventricular action potential due to sympathetic stimulation. Jpn. Heart J. 18, 259–265 (1977)

    Google Scholar 

  49. Taggart, P., Sutton, P., Chalabi, Z., Boyett, M.R., Simon, R., Elliott, D., Gill, J.S.: Effect of adrenergic stimulation on action potential duration restitution in humans. Circulation 107, 285–289 (2003)

    Article  Google Scholar 

  50. Ng, G.A., Brack, K.E., Patel, V.H., Coote, J.H.: Autonomic modulation of electrical restitution, alternans, and ventricular fibrillation initiation in the isolated heart. Cardiovasc. Res. 73, 750–760 (2007)

    Article  Google Scholar 

  51. Han, W., Wang, Z., Nattel, S.: Slow delayed rectifier current and repolarization in canine cardiac Purkinje cells. Am. J. Physiol. 280, H1075–H1080 (2001)

    Google Scholar 

  52. Volders, P.G., Stengl, M., van Opstal, J.M., Gerlach, U., Spätjens, R.L., Beekman, J.D., Sipido, K.R., Vos, M.A.: Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation 107, 2753–2760 (2003)

    Article  Google Scholar 

  53. Xia, Y., Liang, Y., Kongstad, O., Liao, Q., Holm, M., Olsson, B., Yuan, S.: In vivo validation of the coincidence of the peak and end of the T wave with full repolarisation of the epicardium and endocardium in swine. Heart Rhythm 2, 162–169 (2005)

    Article  Google Scholar 

  54. Shimizu, W.: Effects of sympathetic stimulation on various repolarization indices in the congenital long QT syndrome. Ann. Noninvasive Electrocardiol. 7, 332–342 (2002)

    Article  Google Scholar 

  55. Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92, 541–549 (2002)

    Google Scholar 

  56. Pitzalis, M.V., Mastropasqua, F., Passantino, A., Massari, F., Ligurgo, L., Forleo, C., Balducci, C., Lombardi, F., Rizzon, P.: Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in post-myocardial infarction patients. Circulation 97(14), 1362–1367 (1998)

    Google Scholar 

Download references

Acknowledgements

The experimental portion of this research project was conducted at Glasgow Royal Infirmary, with the financial support of British Heart Foundation Project Grant PG/02/155 and Stuart M. Cobbe. The analytical portion of this research project was conducted at St. Louis University School of Medicine. TK received salary support from Sankyo Co, Ltd., Shizuoka, Japan. The authors thank Robert F. Gilmour Jr. and Paul Belk for expert advice concerning the manuscript.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Author contributions

All authors contributed to the study: TK and NN in the analysis and interpretation of data, MNH and MD in the conception and design of the study and in conducting the experiments, SMC in the conception and design of the study, and MAW in all of the above and in writing the computer program for data analysis. All authors also read the manuscript critically and approved the final version, with the exception of MNH, who passed away before the study was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Alford Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimotsuki, T., Niwa, N., Hicks, M.N. et al. Isoprenaline increases the slopes of restitution trajectory in the conscious rabbit with ischemic heart failure. J Biol Phys 36, 299–315 (2010). https://doi.org/10.1007/s10867-009-9185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9185-5

Keywords

Navigation