Journal of Biological Physics

, Volume 36, Issue 2, pp 121–134 | Cite as

Temperature response in electrosensors and thermal voltages in electrolytes

  • Brandon R. BrownEmail author


Temperature sensation is increasingly well understood in several model organisms. One of the most sensitive organs to temperature changes is the functional electrosensor of sharks and their relatives; its extreme thermal responsiveness, in excised preparations, has not been mechanistically described. In recent years, conflicting reports have appeared concerning the properties of a hydrogel that fills the ampullae of Lorenzini. The appearance of a thermoelectric effect in the gel (or, using different methods, a reported lack thereof) suggested a link between the exquisite electrosense and the thermal response of the electroreceptors (or, alternately, denied that link). I review available electrophysiology evidence of the organ’s temperature response, calculate a theoretical gel signal prediction using physical chemistry, analyze the strengths and weaknesses of the existing gel measurements, and discuss broader implications for the ampullae and temperature sensation.


Electroreception Temperature receptors Soret effect Seebeck effect Ampullae of Lorenzini Thermoelectric material Polymer gel 



The author thanks: T.B. Sanford for detailed discussions of the Soret effect and metal electrodes in seawater; T. Tricas, F. Moss, and L.A. Wilkens, for conversations relating to the ampullae of Lorenzini; J. Curtis, C. Hutchison, and L. Margerum for discussions of electrode chemistry; and M. Hughes, C. Russo, A. Abramson and J. Dyck for discussion of experimental techniques. The author declares no conflict of interest.


  1. 1.
    McKemy, D.D.: Temperature sensing across species. Pflugers Arch – Eur. J. Physiol. 454, 777–791 (2007)CrossRefGoogle Scholar
  2. 2.
    Damann, N., Voets, T., Nilius, B.: TRPs in our senses. Curr. Biol. 18, R880–R889 (2008)CrossRefGoogle Scholar
  3. 3.
    Kalmijn, A.: The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383 (1971)Google Scholar
  4. 4.
    Waltman, B.: Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol. Scand. Suppl. 264, 1–60 (1966)Google Scholar
  5. 5.
    Lu, J., Fishman, H.: Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. Biophys. J. 67, 1525–1533 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Murray, R.W., Potts, W.: The composition of the endolymph, perilymph and other body fluids of elasmobranchs. Comp. Biochem. Physiol. 2, 65 (1961)CrossRefGoogle Scholar
  7. 7.
    Brown, B.R., Hutchison, J.C., Hughes, M.E., Kellogg, D.R., Murray, R.W.: Electrical characterization of gel collected from shark electrosensors. Phys. Rev. E 65, 061903 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Brown, B.R., Hughes, M.E., Russo, C.: Infrastructure in the electric sense: admittance data from shark hydrogels. J. Comp. Physiol. A 191, 115–123 (2005)CrossRefGoogle Scholar
  9. 9.
    Eley, D.D., Spivey, D.I.: Semiconductivity in proteins and haemoglobin. Nature 188, 724–725 (1981)Google Scholar
  10. 10.
    Gutman, F., Lyons, L.E.: Organic Semiconductors A&B. Wiley, New York (1967)Google Scholar
  11. 11.
    Sand, A.: The function of the ampullae of Lorenzini, with some observations on the effect of temperature on sensory rhythms. Proc. R. Soc. Lond. B 125, 524 (1938)CrossRefADSGoogle Scholar
  12. 12.
    Murray, R.W.: The response of the ampullae of lorenzini to combined stimulation by temperature change and weak direct currents. J. Physiol. 145, 1–13 (1959)Google Scholar
  13. 13.
    Murray, R.W.: The response of the ampullae of lorenzini of elasmobranchs to mechanical stimulation. J. Exp. Biol. 37, 417–424 (1960)Google Scholar
  14. 14.
    Murray, R.W.: The response of the ampullae of lorenzini of elasmobranchs to electrical stimulation. J. Exp. Biol. 39, 119–128 (1962)Google Scholar
  15. 15.
    Hensel, H.: Effect of temporal and spatial temperature gradients on the ampullae of lorenzini. Pflugers Arch. 347, 89–100 (1974)CrossRefGoogle Scholar
  16. 16.
    Nier, K., Hensel, H., Bromm, B.: Differential thermosensitivity and electric prepolarization of the ampullae of lorenzini. Pflugers Arch. 363, 181–185 (1976)CrossRefGoogle Scholar
  17. 17.
    Broun, G.R., Govardovskii, V.I.: Investigation of the mechanism of temperature sensitivity of the electroreceptors of ampullae of lorenzini. Neurophysiology 12, 54–59 (1980)CrossRefGoogle Scholar
  18. 18.
    Broun, G.R., Govardovskii, V.I.: Changes in transepithelial potential and spike responses of ampullae of lorenzini of the skate to temperature stimulation. Neurophysiology 14, 7–13 (1982)CrossRefGoogle Scholar
  19. 19.
    Akoev, G.N., Volpe, N.O., Zhadan, G.G.: Analysis of effects of chemical and thermal stimuli on the ampullae of Lorenzini of the skates. Comp. Biochem. Physiol. A 65, 193 (1980)CrossRefGoogle Scholar
  20. 20.
    Lowenstein, W.R., Ishiko, N.: Sodium chloride sensitivity and electrochemical effects in a Lorenzinian ampulla. Nature 194, 292–294 (1962)CrossRefADSGoogle Scholar
  21. 21.
    Wissing, H., Braun, H.A., Schafer, K.: Dynamic response characteristics of the ampullae of Lorenzini to thermal and electrical stimuli. Progr. Brain Res. 74, 99–110 (1988)CrossRefGoogle Scholar
  22. 22.
    Braun, H.A., Wissing, H., Schafer, K., Hirsch, M.C.: Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367, 270–273 (1994)CrossRefADSGoogle Scholar
  23. 23.
    Brown, B.R.: Sensing temperature without ion channels. Nature 421, 495 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics. Springer, New York (2001)zbMATHGoogle Scholar
  25. 25.
    Brown, B.R., Hughes, M.E., Russo, C.: Thermoelectricity in natural and synthetic hydrogels. Phys. Rev. E 70, 031917 (2004)CrossRefADSGoogle Scholar
  26. 26.
    Agar, J.N., Turner, J.C.R.: Thermal diffusion in solutions of electrolytes. Proc. R. Soc. Lond. A Math. Phys. Sci. 255, 307–330 (1960)CrossRefADSGoogle Scholar
  27. 27.
    Leaist, D.G.: Soret coefficients of mixed electrolytes. J. Sol. Chem. 19, 1–10 (1990)CrossRefGoogle Scholar
  28. 28.
    Wiegand, S.: Thermal diffusion in liquid mixtures and polymer solutions. J. Phys: Condens. Matter 16, R357–R379 (2004)CrossRefADSGoogle Scholar
  29. 29.
    Artola, P., Rousseau, B.: Microscopic interpretation of a pure chemical contribution to the Soret effect. Phys. Rev. Lett. 98, 125901 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Leaist, D.G., Hui, L.: Conductometric determination of Soret coefficients of a ternary mixed electrolyte. J. Phys. Chem. 94, 447–451 (1990)CrossRefGoogle Scholar
  31. 31.
    Piazza, R., Guarino, A.: Soret effect in interacting micellar solutions. Phys. Rev. Lett. 88, 208302 (2002)CrossRefADSGoogle Scholar
  32. 32.
    Hyk, W., Ciszkowska, M.: Studies of transport phenomena and electrostatic interactions in polyacrylate gels. J. Phys. Chem. B 103, 6466–6474 (1999)CrossRefGoogle Scholar
  33. 33.
    Grosso, G., Parravicini, G.P.: Solid State Physics, pp. 414–424. Academic Press, London (2000)Google Scholar
  34. 34.
    Kasap, S.O.: Principles of Electronic Materials and Devices, pp. 278-284. McGraw Hill, San Francisco (2000)Google Scholar
  35. 35.
    Brown, B.R.: Sensing temperature without ion channels: corrigendum. Nature 454, 246 (2008)CrossRefADSGoogle Scholar
  36. 36.
    Fields, R.D., Fields, K.D., Fields, M.C.: Semiconductor gel in shark sense organs? Neurosci. Lett. 426, 166–170 (2007)CrossRefGoogle Scholar
  37. 37.
    Milazzo, G., Caroli, S.: Tables of Standard Electrochemical Potentials. John Wiley and Sons, New York (1978)Google Scholar
  38. 38.
    Sanford, T.B., Carlson, J.A., Dunlap, J.H., Prater, M.D., Lien, R.-C.: An electromagnetic vorticity and velocity sensor for observing finescale kinetic fluctuations in the ocean. J. Atmos. Ocean. Technol. 16, 1647–1667 (1999)CrossRefADSGoogle Scholar
  39. 39.
    Sanford, T.B.: Doctoral Thesis, Massachusetts Institute of Technology, Boston (1967)Google Scholar
  40. 40.
    Braun, H.A., Schafer, K., Wissing, H.: Theories and models of temperature transduction. In: Bligh, J., Voigt, K. (eds.) Thermoreception and Temperature Regulation, pp. 19–29. Springer-Verlag, Berlin (1990)Google Scholar
  41. 41.
    Akoev, G.N.: Temperature sensitivity of the ampullea of lorenzini of elasmobranchs. In: Bligh, J., Voigt, K. (eds.) Thermoreception and Temperature Regulation, pp. 44–52. Springer-Verlag, Berlin (1990)Google Scholar
  42. 42.
    Clapham, D.E.: TRP Channels as cellular sensors. Nature 426, 517–524 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of San FranciscoSan FranciscoUSA

Personalised recommendations