Skip to main content
Log in

The influence of the astrocyte field on neuronal dynamics and synchronization

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Astrocytes can sense local synaptic release of glutamate by metabotropic glutamate receptors. Receptor activation in turn can mediate transient increases of astrocytic intracellular calcium concentration through inositol 1,4,5-trisphosphate production. Notably, the perturbation of calcium concentration can propagate to other adjacent astrocytes. Astrocytic calcium signaling can therefore be linked to synaptic information transfer between neurons. On the other hand, astrocytes can also modulate neuronal activity by feeding back onto synaptic terminals in a fashion that depends on their intracellular calcium concentration. Thus, astrocytes can also be active partners in neuronal network activity. The aim of our study is to provide a computationally simple network model of mutual neuron–astrocyte interactions, in order to investigate the possible roles of astrocytes in neuronal network dynamics. In particular, we focus on the information entropy of neuronal firing of the whole network, considering how it could be affected by neuron–glial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haydon, P.G.: Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2,185–193 (2001)

    Article  Google Scholar 

  2. Atri, A., Amundson, J., Clapham, D., Sneyd, J.: A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65, 1727–1739 (1993)

    Article  Google Scholar 

  3. Wilkins, M., Sneyd, J.: Intercellular calcium spiral waves. J. Theor. Biol. 191, 299–308 (1998)

    Article  Google Scholar 

  4. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  5. Berridge, M.J., Lipp, P., Bootman, M.D.: The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000)

    Article  Google Scholar 

  6. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  7. Nadkarni, S., Jung, P.: Dressed neurons: modeling neural–glial interactions. Phys. Biol. 1, 35–41 (2004)

    Article  ADS  Google Scholar 

  8. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1954)

    Google Scholar 

  9. De Pittà, M., Volman, V., Levine, H., Ben-Jacob, E.: Multimodal encoding in a simplified model of intracellular calcium signaling. Cogn. Proc. 10(S1), 55–70 (2009)

    Article  Google Scholar 

  10. De Pittà, M., Volman, V., Levine, H., Pioggia, G., De Rossi, D., Ben-Jacob, E.: Coexistence of amplitude and frequency modulations in intracellular calcium dynamics. Phys. Rev. E 77 030903(R) (2008)

    Article  Google Scholar 

  11. Carmignoto, G.: Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581 (2000)

    Article  Google Scholar 

  12. Magistretti, P.J., Pellerin, L.: Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol. Sci. 14, 177–182 (1999)

    Google Scholar 

  13. Gebber, G.L., Zhong, S., Lewis, C., Barman, S.M.: Human brain alpha rhythm: nonlinear oscillation or filtered noise? Brain Res. 818(2), 556–560 (1999)

    Article  Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  15. Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970)

    Google Scholar 

  16. Chaitin, G.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  17. Allegrini, P., Giuntoli, M., Grigolini, P., West, B.J.: From knowledge, knowability and the search for objective randomness to a new vision of complexity. Chaos Solitons Fractals 20, 11–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Volman, V., Ben-Jacob, E., Levine, H.: The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 19, 303–326 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101 (2003)

    Article  ADS  Google Scholar 

  20. Hulata, E., Volman, V., Ben Jacob, E.: Self-regulated complexity in neural networks. J. Nat. Comput. 4, 363–386 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Silvestri, L., Fronzoni, L., Grigolini, P., Allegrini, P.: Event-driven power-law relaxation in weak turbulence. Phys. Rev. Lett. 102, 014502 (2009)

    Article  ADS  Google Scholar 

  22. Uhlhaas, P., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006)

    Article  Google Scholar 

  23. Kang, N., Xu, J., Xu, Q., Nedergaard, M., Kang, J.: Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 94, 4121-4130 (2005)

    Article  Google Scholar 

  24. Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., Haydon, P.G.: Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J. Neurosci. 26(36), 9312–9322 (2006)

    Article  Google Scholar 

  25. Amzica, F., Massimini, M., Manfridi, A.: Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J. Neurosci. 22, 1042–1053 (2002)

    Google Scholar 

  26. Tashiro, A., Goldberg, J., Yuste, R.: Calcium oscillations in neocortical astrocytes under epileptiform conditions. J. Neurobiol. 50, 45–55 (2002)

    Article  Google Scholar 

  27. Schwarcz, R.: Early glial dysfunction in epilepsy. Epilepsia 49(S2), 1–2 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Allegrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allegrini, P., Fronzoni, L. & Pirino, D. The influence of the astrocyte field on neuronal dynamics and synchronization. J Biol Phys 35, 413–423 (2009). https://doi.org/10.1007/s10867-009-9166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9166-8

Keywords

Navigation