Skip to main content
Log in

Cardioviral RNA structure logo analysis: entropy, correlations, and prediction

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim, S.H., Suddath, G.J., Quigley, G.J., et al.: Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–439 (1974)

    Article  ADS  Google Scholar 

  2. Shi, H., Moore, P.B.: The crystal structure of yeast phenylalanine tRNA at 1.92 Å a resolution: a classic structure revisited. RNA 6, 1091–1105 (2000)

    Article  Google Scholar 

  3. Witwer, C., Rauscher, S., Hofacker, I., et al.: Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Res. 29, 5079–5089 (2001)

    Article  Google Scholar 

  4. Wuyts, J., Perriere, G., Van De Peer, Y.: The European ribosomal RNA database. Nucleic Acids Res. 32, 101D–103D (2004)

    Article  Google Scholar 

  5. Cannone, J.J., Subramanian, S., Schnare, M.N., et al.: The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002)

    Article  Google Scholar 

  6. Griffiths-Jones, S., Bateman, A., Marshall, M., et al.: Rfam: an RNA family database. Nucleic Acids Res. 31, 439–444 (2003)

    Article  Google Scholar 

  7. Rosenblad, M.A., Gorodkin, J., Knudsen, B., et al.: SRPDB: Signal recognition particle database. Nucleic Acids Res. 31, 363–364 (2003)

    Article  Google Scholar 

  8. De los Monteros, E.A.: Models of the primary and secondary structure for the 12 S rRNA of birds: a guideline for sequence alignment. DNA Seq. 14, 241–256 (2003)

    Google Scholar 

  9. Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., et al.: Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 9, 1084–1097 (2003)

    Article  Google Scholar 

  10. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002)

    Article  Google Scholar 

  11. Luck, R., Graf, S., Steger, G.: ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res. 27, 4208–4217 (1999)

    Article  Google Scholar 

  12. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Res. 22, 2079–2088 (1994)

    Article  Google Scholar 

  13. Andrew, K.C., Wong, D., Chiu, K.Y.: An event-covering method for effective probabilistic inference. Pattern Recogn. 20, 245–255 (1987)

    Article  Google Scholar 

  14. Chiu, D.K., Kolodziejczak, T.: Inferring consensus structure from nucleic acid sequences. Comput. Appl. Biosci. 7, 347–352 (1991)

    Google Scholar 

  15. Gutell, R.R., Power, A., Hertz, G.Z., et al.: Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 20, 5785–5795 (1992)

    Article  Google Scholar 

  16. Schneider, T.D., Stephens, R.M.: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990)

    Article  Google Scholar 

  17. Emmert, S., Schneider, T.D., Khan, S.G., Kraemer, K.H.: The human XPG gene: Gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 29, 1443–1452 (2001)

    Article  Google Scholar 

  18. Schneider, T.D.: Information content of individual genetic sequences. J. Theor. Biol. 189, 427–441 (1997)

    Article  Google Scholar 

  19. Stormao, G.D.: Information content and free energy in DNA–protein interactions. J. Theor. Biol. 195, 135–137 (1998)

    Article  Google Scholar 

  20. Gorodkin, J., Heyer, L.J., Stormo, G.D.: Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 25, 3724–3732 (1997)

    Article  Google Scholar 

  21. Gorodkin, J., Heyer, L.J., Brunak, S., et al.: Displaying the information contents of structural RNA alignments: the structure logos. CABIOS 13, 583–586 (1997)

    Google Scholar 

  22. Schneider, T.D., Stormao, G.D., Gold, L., Ehrenfeuch, A.: Information content of binding sites. J. Mol. Biol. 188, 415–431 (1986)

    Article  Google Scholar 

  23. Chiu, D.K., Kolodziejczak, T.: Inferring consensus structure from nucleic acid sequences. Comput. Appl. Biosci. 7, 347–352 (1991)

    Google Scholar 

  24. Gutell, R.R., Power, A., Hertz, G.Z., et al.: Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 20, 5785–5795 (1992)

    Article  Google Scholar 

  25. Gorodkin, J., Stærfeldt, H.H., Lund, O., Brunak, S.: MatrixPlot: visualizing sequence constraints. Bioinformatics 15, 769–770 (1999)

    Article  Google Scholar 

  26. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  27. Mathews, D.H., Sabina, J., Zuker, M., et al.: Expanded sequence dependence of thermodynamic parameters provides improved prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  28. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  29. Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. Nucleic Acids Res. 22, 2079–2088 (1994)

    Article  Google Scholar 

  30. Knudsen, B., Hein, J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15, 446–454 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci-Quan Liu.

Additional information

This work was partly supported by NSFC (Natural Science Foundation of China, Nos. 90303018 and 90208018). We thank the referees for help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XZ., Cao, H., Zhang, W. et al. Cardioviral RNA structure logo analysis: entropy, correlations, and prediction. J Biol Phys 36, 145–159 (2010). https://doi.org/10.1007/s10867-009-9154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9154-z

Keywords

Navigation