Abstract
What differentiates the living from the nonliving? What is life? These are perennial questions that have occupied minds since the beginning of cultures. The search for a clear demarcation between animate and inanimate is a reflection of the human tendency to create borders, not only physical but also conceptual. It is obvious that what we call a living creature, either bacteria or organism, has distinct properties from those of the normally called nonliving. However, searching beyond dichotomies and from a global, more abstract, perspective on natural laws, a clear partition of matter into animate and inanimate becomes fuzzy. Based on concepts from a variety of fields of research, the emerging notion is that common principles of biological and nonbiological organization indicate that natural phenomena arise and evolve from a central theme captured by the process of information exchange. Thus, a relatively simple universal logic that rules the evolution of natural phenomena can be unveiled from the apparent complexity of the natural world.
Similar content being viewed by others
References
Kaneko, K.: Life: An Introduction to Complex Systems Biology. Springer, Berlin (2006)
Laurent, G.: What does ‘understanding’ mean? Nat. Neurosci. 3, 1211 (2000). doi:10.1038/81495
Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (1991)
Rashevsky, N.: A contribution to the search of general mathematical principles in biology. Bull. Math. Biophys. 20, 71–92 (1958). doi:10.1007/BF02476561
Kelso, J.A.S., Engstrøm, D.A.: The Complementary Nature. MIT Press, Cambridge (2006)
Kelso, J.A.S., Tognoli, E.: Toward a complementary neuroscience: metastable coordination dynamics of the brain. In: Perlovsky, L.I., Kozma, R. (eds.) Neurodynamics of Cognition and Consciousness. Springer, Berlin (2007)
Cherniak, C.: Local optimization of neuron arbors. Biol. Cybern. 66, 503–510 (1992). doi:10.1007/BF00204115
Paik, K., Kumar, P.: Emergence of self-similar tree network organization. Complexity 13, 30–37 (2008). doi:10.1002/cplx.20214
Nicolis, G., Prigogine, I.: Self-organization in Non-equilibrium Systems. Wiley, New York (1977)
Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B. 237, 37–72 (1952). doi:10.1098/rstb.1952.0012
Sornette, D., Zhang, Y.-C.: Non-linear Langevin models of geomorphic erosion processes. Geophys. J. Int. 113, 382–386 (1993). doi:10.1111/j.1365-246X.1993.tb00894.x
Ramon y Cajal, S.: Degeneracion y Regeneracion del Sistema Nervioso. Moya, Madrid (1913–1914)
Purves, D., Lichtman, J.: Principles of Neural Development. Sinauer, Sunderland (1985)
Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993). doi:10.1103/RevModPhys.65.851
Velarde, M.G., Nekorkin, V.I., Kazantsev, V.B., Ross, J.: The emergence of form by replication. Proc. Natl. Acad. Sci. U. S. A. 94, 5024–5027 (1997). doi:10.1073/pnas.94.10.5024
Schlichting, H.J., Nordmeier, V.: Strukturen im Sand—Kollektives Verhalten und Selbstorganisation bei Granulaten Math. Naturwissenschaften 49, 323–332 (1996)
Shinbrot, T., Muzzio, F.J.: Noise to order. Nature 410, 251–258 (2001) doi:10.1038/35065689
Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray, London (1859)
Amari, S., Arbib, M.A.: Competition and cooperation in neural nets. In: Metzler, J. (ed.) Systems Neuroscience. Academic, New York (1977)
Baron, R.J.: The Cerebral Computer. Lawrence Erlbaum, New Jersey (1987)
Okun, M., Lampl, I.: Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008). doi:10.1038/nn.2105
Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008). doi:10.1038/nature06864
Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87, 068102 (2001). doi:10.1103/PhysRevLett.87.068102
Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005). doi:10.1016/j.tics.2005.08.011
Castelo-Branco, M., Neuenschwander, S., Singer, W.: Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J. Neurosci. 18, 6395–6410 (1998)
Harris, K.D.: Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6, 399–407 (2005). doi:10.1038/nrn1669
Perez Velazquez, J.L.: Brain, behaviour and mathematics: are we using the right approaches? Physica D 212, 161–182 (2005). doi:10.1016/j.physd.2005.10.005
Perez Velazquez, J.L., Wennberg, R. (eds.): Coordinated Activity in the Brain: Measurements and Relevance to Brain Function and Behaviour. Springer, New York (2009)
Maynard Smith, J., Szathmary, E.: The Major Transitions in Evolution. Freeman, Oxford (1995)
Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Going beyond a mean-field model for the learning cortex: second-order statistics. J. Biol. Phys. 33, 213–246 (2007). doi:10.1007/s10867-008-9056-5
Newell, A.C., Shipman, P.D., Sun, Z.: Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J. Theor. Biol. 251, 421–439 (2008). doi:10.1016/j.jtbi.2007.11.036
Plucinski, M., Plucinski, S., Rodriguez Iturbe, I.: Consequences of the fractal architecture of trees on their structural measures. J. Theor. Biol. 251, 82–92 (2008). doi:10.1016/j.jtbi.2007.10.042
Pantaleone, J., Toth, A., Horvath, D., Rother McMahan, J., Smith, R., Butki, D., Braden, J., Mathews, E., Geri, H., Maselko, J.: Oscillations of a chemical garden. Phys. Rev. E 77, 046207 (2008). doi:10.1103/PhysRevE.77.046207
Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. J. Theor. Biol. 250, 634–641 (2008). doi:10.1016/j.jtbi.2007.11.002
Chauvet, G.A.: Non-locality in biological systems results from hierarchy. J. Math. Biol. 31, 475–486 (1993)
Chauvet, G.A.: An n-level field theory of biological networks. J. Math. Biol. 31, 771–795 (1993). doi:10.1007/BF00168045
Chauvet, G.A.: Hierarchical functional organization of formal biological systems: a dynamical approach. II. The concept of non-symmetry leads to a criterion of evolution deduced from an optimum principle of the (O-FBS) sub-system. Philos. Trans. R. Soc. Lond. B 339, 445–461 (1993). doi:10.1098/rstb.1993.0041
Standish, R.K.: Concept and definition of complexity. ArXiv:0805.0685v1 [nlin.AO] (2008). http://arxiv.org/abs/0805.0685
Quastler, H.: Information Theory in Biology. University of Illinois Press, Urbana (1953)
Morowitz, H.J.: Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1955). doi:10.1007/BF02477985
Rashevsky, N.: Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235 (1955). doi:10.1007/BF02477860
Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2, 44–52 (1996). doi:10.1002/(SICI)1099-0526(199609/10)2:1<44::AID-CPLX10>3.0.CO;2-X
von Foerster, H.: Notes on an epistemology for living things. In: Understanding Understanding. Essays on Cybernetics and Cognition. Springer, New York (2003)
Morowitz, H.J.: Energy Flow in Biology. Academic, New York (1968)
Morowitz, H.J., Smith, E.: Energy flow and the organization of life. Complexity 13, 51–59 (2007). doi:10.1002/cplx.20191
Smith, E.: Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185–197 (2008). doi:10.1016/j.jtbi.2008.02.010
Smith, E.: Thermodynamic dual structure of linearly dissipative driven systems. Phys. Rev. E 72, 36130 (2005). doi:10.1103/PhysRevE.72.036130
Ben-Jacob, E., Levine, H.: The artistry of nature. Nature 409, 985–986 (2001). doi:10.1038/35059178
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)
Morowitz, H.J.: Physical background of cycles in biological systems. J. Theor. Biol. 13, 60–62 (1966). doi:10.1016/0022-5193(66)90007-5
Lavrentovich, M., Hemkin, S.: A mathematical model of spontaneous calcium(II) oscillations in astrocytes. J. Theor. Biol. 251, 553–560 (2008). doi:10.1016/j.jtbi.2007.12.011
Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957). doi:10.1103/PhysRev.106.620
Cherniak, C., Changizi, M., Kang, D.W.: Large-scale optimization of neuron arbors. Phys. Rev. E 59, 6001–6009 (1999). doi:10.1103/PhysRevE.59.6001
Biondini, M.: Allometric scaling laws for water uptake by plant roots. J. Theor. Biol. 251, 35–59 (2008). doi:10.1016/j.jtbi.2007.11.018
Banavar, J.R., Colaiori, F., Flammini, A., Maritan, A., Rinaldo, A.: Scaling, optimality, and landscape evolution. J. Stat. Phys. 104, 1–48 (2001). doi:10.1023/A:1010397325029
Lopez Villalta, J.S.: A metabolic view of the diversity–stability relationship. J. Theor. Biol. 252, 39–42 (2008). doi:10.1016/j.jtbi.2008.01.015
Scheneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics, and Life. University of Chicago Press, Chicago (2005)
Haken, H.: Information and Self-organization. Springer, Berlin (1998, 2006)
Ho, M.-W.: Bioenergetics and the coherence of organisms. Neuronetwork World 5, 733–750 (1995). www.i-sis.org.uk
von Foerster, H.: Disorder/Order: discovery or invention? In: Understanding Understanding. Essays on Cybernetics and Cognition. Springer, New York (2003)
Nurse, P.: Life, logic and information. Nature 454, 424–426 (2008). doi:10.1038/454424a
West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997). doi:10.1126/science.276.5309.122
Bennett, C.H., Gacs, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998). doi:10.1109/18.681318
Nekorkin, V.I., Kazantsev, V.B., Rabinovich, M.I., Velarde, M.G.: Controlled disordered patterns and information transfer between coupled neural lattices with oscillatory states. Phys. Rev. E 57, 3344 (1998). doi:10.1103/PhysRevE.57.3344
Ambrose, E.J.: The Nature and Origin of the Biological World. Ellis Horwood, Chichester (1982)
Acknowledgements
The author is grateful to Professor Christopher Cherniak for reviewing the manuscript and providing advice.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perez Velazquez, J.L. Finding simplicity in complexity: general principles of biological and nonbiological organization. J Biol Phys 35, 209–221 (2009). https://doi.org/10.1007/s10867-009-9146-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10867-009-9146-z