Skip to main content
Log in

Finding simplicity in complexity: general principles of biological and nonbiological organization

  • Perspective
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

What differentiates the living from the nonliving? What is life? These are perennial questions that have occupied minds since the beginning of cultures. The search for a clear demarcation between animate and inanimate is a reflection of the human tendency to create borders, not only physical but also conceptual. It is obvious that what we call a living creature, either bacteria or organism, has distinct properties from those of the normally called nonliving. However, searching beyond dichotomies and from a global, more abstract, perspective on natural laws, a clear partition of matter into animate and inanimate becomes fuzzy. Based on concepts from a variety of fields of research, the emerging notion is that common principles of biological and nonbiological organization indicate that natural phenomena arise and evolve from a central theme captured by the process of information exchange. Thus, a relatively simple universal logic that rules the evolution of natural phenomena can be unveiled from the apparent complexity of the natural world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaneko, K.: Life: An Introduction to Complex Systems Biology. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Laurent, G.: What does ‘understanding’ mean? Nat. Neurosci. 3, 1211 (2000). doi:10.1038/81495

    Article  Google Scholar 

  3. Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (1991)

    Google Scholar 

  4. Rashevsky, N.: A contribution to the search of general mathematical principles in biology. Bull. Math. Biophys. 20, 71–92 (1958). doi:10.1007/BF02476561

    Article  Google Scholar 

  5. Kelso, J.A.S., Engstrøm, D.A.: The Complementary Nature. MIT Press, Cambridge (2006)

    Google Scholar 

  6. Kelso, J.A.S., Tognoli, E.: Toward a complementary neuroscience: metastable coordination dynamics of the brain. In: Perlovsky, L.I., Kozma, R. (eds.) Neurodynamics of Cognition and Consciousness. Springer, Berlin (2007)

    Google Scholar 

  7. Cherniak, C.: Local optimization of neuron arbors. Biol. Cybern. 66, 503–510 (1992). doi:10.1007/BF00204115

    Article  MATH  Google Scholar 

  8. Paik, K., Kumar, P.: Emergence of self-similar tree network organization. Complexity 13, 30–37 (2008). doi:10.1002/cplx.20214

    Article  ADS  Google Scholar 

  9. Nicolis, G., Prigogine, I.: Self-organization in Non-equilibrium Systems. Wiley, New York (1977)

    Google Scholar 

  10. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B. 237, 37–72 (1952). doi:10.1098/rstb.1952.0012

    Article  ADS  Google Scholar 

  11. Sornette, D., Zhang, Y.-C.: Non-linear Langevin models of geomorphic erosion processes. Geophys. J. Int. 113, 382–386 (1993). doi:10.1111/j.1365-246X.1993.tb00894.x

    Article  ADS  Google Scholar 

  12. Ramon y Cajal, S.: Degeneracion y Regeneracion del Sistema Nervioso. Moya, Madrid (1913–1914)

  13. Purves, D., Lichtman, J.: Principles of Neural Development. Sinauer, Sunderland (1985)

    Google Scholar 

  14. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993). doi:10.1103/RevModPhys.65.851

    Article  ADS  Google Scholar 

  15. Velarde, M.G., Nekorkin, V.I., Kazantsev, V.B., Ross, J.: The emergence of form by replication. Proc. Natl. Acad. Sci. U. S. A. 94, 5024–5027 (1997). doi:10.1073/pnas.94.10.5024

    Article  ADS  Google Scholar 

  16. Schlichting, H.J., Nordmeier, V.: Strukturen im Sand—Kollektives Verhalten und Selbstorganisation bei Granulaten Math. Naturwissenschaften 49, 323–332 (1996)

    Google Scholar 

  17. Shinbrot, T., Muzzio, F.J.: Noise to order. Nature 410, 251–258 (2001) doi:10.1038/35065689

    Article  ADS  Google Scholar 

  18. Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray, London (1859)

    Google Scholar 

  19. Amari, S., Arbib, M.A.: Competition and cooperation in neural nets. In: Metzler, J. (ed.) Systems Neuroscience. Academic, New York (1977)

    Google Scholar 

  20. Baron, R.J.: The Cerebral Computer. Lawrence Erlbaum, New Jersey (1987)

    Google Scholar 

  21. Okun, M., Lampl, I.: Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008). doi:10.1038/nn.2105

    Article  Google Scholar 

  22. Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008). doi:10.1038/nature06864

    Article  ADS  Google Scholar 

  23. Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87, 068102 (2001). doi:10.1103/PhysRevLett.87.068102

    Article  ADS  Google Scholar 

  24. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005). doi:10.1016/j.tics.2005.08.011

    Article  Google Scholar 

  25. Castelo-Branco, M., Neuenschwander, S., Singer, W.: Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J. Neurosci. 18, 6395–6410 (1998)

    Google Scholar 

  26. Harris, K.D.: Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6, 399–407 (2005). doi:10.1038/nrn1669

    Article  Google Scholar 

  27. Perez Velazquez, J.L.: Brain, behaviour and mathematics: are we using the right approaches? Physica D 212, 161–182 (2005). doi:10.1016/j.physd.2005.10.005

    Article  ADS  MathSciNet  Google Scholar 

  28. Perez Velazquez, J.L., Wennberg, R. (eds.): Coordinated Activity in the Brain: Measurements and Relevance to Brain Function and Behaviour. Springer, New York (2009)

    Google Scholar 

  29. Maynard Smith, J., Szathmary, E.: The Major Transitions in Evolution. Freeman, Oxford (1995)

    Google Scholar 

  30. Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Going beyond a mean-field model for the learning cortex: second-order statistics. J. Biol. Phys. 33, 213–246 (2007). doi:10.1007/s10867-008-9056-5

    Article  Google Scholar 

  31. Newell, A.C., Shipman, P.D., Sun, Z.: Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J. Theor. Biol. 251, 421–439 (2008). doi:10.1016/j.jtbi.2007.11.036

    Article  Google Scholar 

  32. Plucinski, M., Plucinski, S., Rodriguez Iturbe, I.: Consequences of the fractal architecture of trees on their structural measures. J. Theor. Biol. 251, 82–92 (2008). doi:10.1016/j.jtbi.2007.10.042

    Article  Google Scholar 

  33. Pantaleone, J., Toth, A., Horvath, D., Rother McMahan, J., Smith, R., Butki, D., Braden, J., Mathews, E., Geri, H., Maselko, J.: Oscillations of a chemical garden. Phys. Rev. E 77, 046207 (2008). doi:10.1103/PhysRevE.77.046207

    Article  ADS  Google Scholar 

  34. Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. J. Theor. Biol. 250, 634–641 (2008). doi:10.1016/j.jtbi.2007.11.002

    Article  Google Scholar 

  35. Chauvet, G.A.: Non-locality in biological systems results from hierarchy. J. Math. Biol. 31, 475–486 (1993)

    MATH  MathSciNet  Google Scholar 

  36. Chauvet, G.A.: An n-level field theory of biological networks. J. Math. Biol. 31, 771–795 (1993). doi:10.1007/BF00168045

    Article  MATH  MathSciNet  Google Scholar 

  37. Chauvet, G.A.: Hierarchical functional organization of formal biological systems: a dynamical approach. II. The concept of non-symmetry leads to a criterion of evolution deduced from an optimum principle of the (O-FBS) sub-system. Philos. Trans. R. Soc. Lond. B 339, 445–461 (1993). doi:10.1098/rstb.1993.0041

    Article  Google Scholar 

  38. Standish, R.K.: Concept and definition of complexity. ArXiv:0805.0685v1 [nlin.AO] (2008). http://arxiv.org/abs/0805.0685

  39. Quastler, H.: Information Theory in Biology. University of Illinois Press, Urbana (1953)

    Google Scholar 

  40. Morowitz, H.J.: Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1955). doi:10.1007/BF02477985

    Article  Google Scholar 

  41. Rashevsky, N.: Life, information theory, and topology. Bull. Math. Biophys. 17, 229–235 (1955). doi:10.1007/BF02477860

    Article  MathSciNet  Google Scholar 

  42. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2, 44–52 (1996). doi:10.1002/(SICI)1099-0526(199609/10)2:1<44::AID-CPLX10>3.0.CO;2-X

    Article  MathSciNet  Google Scholar 

  43. von Foerster, H.: Notes on an epistemology for living things. In: Understanding Understanding. Essays on Cybernetics and Cognition. Springer, New York (2003)

    Google Scholar 

  44. Morowitz, H.J.: Energy Flow in Biology. Academic, New York (1968)

    Google Scholar 

  45. Morowitz, H.J., Smith, E.: Energy flow and the organization of life. Complexity 13, 51–59 (2007). doi:10.1002/cplx.20191

    Article  Google Scholar 

  46. Smith, E.: Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185–197 (2008). doi:10.1016/j.jtbi.2008.02.010

    Article  Google Scholar 

  47. Smith, E.: Thermodynamic dual structure of linearly dissipative driven systems. Phys. Rev. E 72, 36130 (2005). doi:10.1103/PhysRevE.72.036130

    Article  ADS  Google Scholar 

  48. Ben-Jacob, E., Levine, H.: The artistry of nature. Nature 409, 985–986 (2001). doi:10.1038/35059178

    Article  ADS  Google Scholar 

  49. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  50. Morowitz, H.J.: Physical background of cycles in biological systems. J. Theor. Biol. 13, 60–62 (1966). doi:10.1016/0022-5193(66)90007-5

    Article  Google Scholar 

  51. Lavrentovich, M., Hemkin, S.: A mathematical model of spontaneous calcium(II) oscillations in astrocytes. J. Theor. Biol. 251, 553–560 (2008). doi:10.1016/j.jtbi.2007.12.011

    Article  Google Scholar 

  52. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957). doi:10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  Google Scholar 

  53. Cherniak, C., Changizi, M., Kang, D.W.: Large-scale optimization of neuron arbors. Phys. Rev. E 59, 6001–6009 (1999). doi:10.1103/PhysRevE.59.6001

    Article  ADS  Google Scholar 

  54. Biondini, M.: Allometric scaling laws for water uptake by plant roots. J. Theor. Biol. 251, 35–59 (2008). doi:10.1016/j.jtbi.2007.11.018

    Article  Google Scholar 

  55. Banavar, J.R., Colaiori, F., Flammini, A., Maritan, A., Rinaldo, A.: Scaling, optimality, and landscape evolution. J. Stat. Phys. 104, 1–48 (2001). doi:10.1023/A:1010397325029

    Article  MATH  Google Scholar 

  56. Lopez Villalta, J.S.: A metabolic view of the diversity–stability relationship. J. Theor. Biol. 252, 39–42 (2008). doi:10.1016/j.jtbi.2008.01.015

    Article  Google Scholar 

  57. Scheneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics, and Life. University of Chicago Press, Chicago (2005)

    Google Scholar 

  58. Haken, H.: Information and Self-organization. Springer, Berlin (1998, 2006)

    Google Scholar 

  59. Ho, M.-W.: Bioenergetics and the coherence of organisms. Neuronetwork World 5, 733–750 (1995). www.i-sis.org.uk

    Google Scholar 

  60. von Foerster, H.: Disorder/Order: discovery or invention? In: Understanding Understanding. Essays on Cybernetics and Cognition. Springer, New York (2003)

    Google Scholar 

  61. Nurse, P.: Life, logic and information. Nature 454, 424–426 (2008). doi:10.1038/454424a

    Article  ADS  Google Scholar 

  62. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997). doi:10.1126/science.276.5309.122

    Article  Google Scholar 

  63. Bennett, C.H., Gacs, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998). doi:10.1109/18.681318

    Article  MATH  MathSciNet  Google Scholar 

  64. Nekorkin, V.I., Kazantsev, V.B., Rabinovich, M.I., Velarde, M.G.: Controlled disordered patterns and information transfer between coupled neural lattices with oscillatory states. Phys. Rev. E 57, 3344 (1998). doi:10.1103/PhysRevE.57.3344

    Article  ADS  MathSciNet  Google Scholar 

  65. Ambrose, E.J.: The Nature and Origin of the Biological World. Ellis Horwood, Chichester (1982)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Professor Christopher Cherniak for reviewing the manuscript and providing advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Perez Velazquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez Velazquez, J.L. Finding simplicity in complexity: general principles of biological and nonbiological organization. J Biol Phys 35, 209–221 (2009). https://doi.org/10.1007/s10867-009-9146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9146-z

Keywords

Navigation