Skip to main content
Log in

An evolving model of undirected networks based on microscopic biological interaction systems

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

With protein or gene interaction systems as the background, this paper proposes an evolving model of biological undirected networks, which are consistent with some plausible mechanisms in biology. Through introducing a rule of preferential duplication of a node inversely proportional to the degree of existing nodes and an attribute of the age of the node (the older, the more influence), by which the probability of a node receiving re-wiring links is chosen, the model networks generated in certain parameter conditions could reproduce series of statistic topological characteristics of real biological graphs, including the scale-free feature, small world effect, hierarchical modularity, limited structural robustness, and disassortativity of degree–degree correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.-L.: Topology of evolving networks: local events and universality. Phys. Rev. Lett. 85, 5234 (2000). doi:10.1103/PhysRevLett.85.5234

    Article  ADS  Google Scholar 

  2. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U. S. A. 98, 404–409 (2001). doi:10.1073/pnas.021544898

    Article  MATH  ADS  Google Scholar 

  3. Newman, M.E.J.: Who is the best connected scientist? A study of scientific coauthorship networks. Phys. Rev. E 64, 016131 (2001). doi:10.1103/PhysRevE.64.016131

    Article  ADS  Google Scholar 

  4. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999). doi:10.1038/43601

    Article  ADS  Google Scholar 

  5. Montoya, J.M., Solé, R.V.: Small world patterns in food webs. J. Theor. Biol. 214, 405–412 (2002). doi:10.1006/jtbi.2001.2460

    Article  Google Scholar 

  6. Barabási, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–114 (2004). doi:10.1038/nrg1272

    Article  Google Scholar 

  7. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  ADS  Google Scholar 

  8. Almaas, E.: Biological impacts and context of network theory. J. Exp. Biol. 210, 1548–1558 (2007). doi:10.1242/jeb.003731

    Article  Google Scholar 

  9. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999). doi:10.1126/science.286.5439.509

    Article  MathSciNet  Google Scholar 

  10. Vázquez, A., Flamminia, A., Maritana, A.: Modeling of protein interaction networks. Complexus 1, 38 (2003). doi: 10.1159/000067642

    Article  Google Scholar 

  11. Solé, R.V., Romualdo, P.-S. Smith, E., Kepler, T.B.: A model of large-scale proteome evolution. Adv. Complex Systems 5, 43–54 (2002).

    Article  MATH  Google Scholar 

  12. Romualdo, P.-S., Smith, E. Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003). doi:10.1016/S0022-5193(03)00028-6

    Article  Google Scholar 

  13. Sun, S., Liu, Z., Chen, Z., Yuan, Z.: Error and attack tolerance of evolving networks with local preferential attachment. Physica A 373, 851–860 (2007). doi:10.1016/j.physa.2006.05.049

    Article  ADS  Google Scholar 

  14. Takemoto, K., Oosawa, C.: Modeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity. Math. Biosci. 208, 454–468 (2007). doi:10.1016/j.mbs.2006.11.002

    Article  MATH  MathSciNet  Google Scholar 

  15. Takemoto, K., Oosawa, C.: Evolving networks by merging cliques. Phys. Rev. E 71, 046116 (2005). doi:10.1103/PhysRevE.72.046116

    Article  ADS  MathSciNet  Google Scholar 

  16. Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970)

    Google Scholar 

  17. Eisenberg, E., Levanon, E.Y.: Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003). doi:10.1103/PhysRevLett.91.138701

    Article  ADS  Google Scholar 

  18. Louzoun, Y., Muchnik, L., Solomon, S.: Copying nodes versus editing links: the source of the difference between genetic regulatory networks and the WWW. Syst. Biol. (Stevenage) 22(5), 581–588 (2006)

    Google Scholar 

  19. Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web. Science 287, 2115 (2000). doi:10.1126/science.287.5461.2115a

    Article  Google Scholar 

  20. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., Lander, E.S.: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003). doi:10.1038/nature01644

    Article  ADS  Google Scholar 

  21. Nadeau, J.H., Sankoff, D.: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147, 1259–1266 (1997)

    Google Scholar 

  22. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). doi:10.1103/PhysRevE.67.026112

    Article  ADS  Google Scholar 

  23. Doyle, J.C., Alderson, D., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., Willinger, W.: The “robust yet fragile” nature of the internet. Proc. Natl. Acad. Sci. U. S. A. 102(41), 14497–14502 (2005). doi:10.1073/pnas.0501426102

    Article  ADS  Google Scholar 

  24. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack: tolerance of complex networks. Nature 406, 378–382 (2000). doi:10.1038/35019019

    Article  ADS  Google Scholar 

  25. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001). doi:10.1038/35075138

    Article  ADS  Google Scholar 

  26. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 210 (2002). doi:10.1126/science.1065103

    Article  Google Scholar 

  27. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87, 258701 (2001). doi:10.1103/PhysRevLett.87.258701

    Article  ADS  Google Scholar 

  28. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). doi:10.1103/PhysRevE.67.026126

    Article  ADS  Google Scholar 

  29. Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., Teichmann, S.A.: Structure and evolution of transcriptional regulatory networks. Curr. Opin. Struct. Biol. 14, 283–291 (2004). doi: 10.1016/j.sbi.2004.05.004

    Article  Google Scholar 

  30. Grönlund, A.: Networking genetic regulation and neural computation: directed network topology and its effect on the dynamics. Phys. Rev. E 70, 061908 (2004). doi:10.1103/PhysRevE.70.061908

    Article  ADS  Google Scholar 

  31. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000). doi:10.1038/35036627

    Article  ADS  Google Scholar 

  32. Sorrentino, F., di Bernardo, M., Cuéllar, G.H., Boccaletti, S.: Synchronization in weighted scale-free networks with degree–degree correlation. Physica D 224, 123–129 (2006). doi:10.1016/j.physd.2006.09.030

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res. 31–39, 2443–2450 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank all our research group members for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, L., Zhang, J. & Jiang, L. An evolving model of undirected networks based on microscopic biological interaction systems. J Biol Phys 35, 197–207 (2009). https://doi.org/10.1007/s10867-009-9142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9142-3

Keywords

Navigation