Scanning force microscopy studies of X-ray-induced double-strand breaks in plasmid DNA

  • M. Brezeanu
  • F. Träger
  • F. Hubenthal
Original Paper


We present an analysis of X-ray-induced damage in ΦX174 plasmid DNA, applying doses between D = 250 and 1,500 Gy. To analyse this damage in detail, the distribution of plasmid fragments after irradiation have been determined by scanning force microscopy. The results show that even for the lowest dose of D = 250 Gy, a significant amount of double-strand breaks are observed. For increasing dose, the percentage of small fragments increases and is accompanied by a shortening of the average fragment length from < L> = 1,400 nm for a dose of D = 250 Gy to < L> = 1,080 nm after irradiation with D = 1,500 Gy. The most crucial parameter, the average number of double-strand breaks per broken plasmid (<DSBb> ) has been determined for the first time for the applied doses. The results show that the average number of DSBs per broken plasmid <DSBb> increases almost linearly from a value of <DSBb> = 1.3 after irradiation with D = 250 Gy to <DSBb> = 1.7 after exposure to D = 1,500 Gy. The presented results show that the amount of DSBs induced by X-ray radiation in plasmid DNA can be calculated with high accuracy by means of scanning force microscopy, providing relevant information regarding the interaction of X-rays with DNA molecules.


SFM Plasmid DNA X-rays DSBs 



The authors acknowledge financial support from GSI—Darmstadt under the project KS/HUB. We are thankful to Katarzyna Psonka, from the Department of Biophysics from GSI—Darmstadt, for technical support.


  1. 1.
    Brons, S., Taucher-Scholtz, G., Scholz, M., Kraft, G.: A track structure model for simulation of strand breaks in plasmid DNA after heavy ion irradiation. Radiat. Environ. Biophys. 42, 63–72 (2003)CrossRefGoogle Scholar
  2. 2.
    von Sonntag, C.: Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective. Springer, New York (2006)Google Scholar
  3. 3.
    Durante, M.: Focus on heavy ions in biophysics and medical physics. N. J. Phys. 10, 075002 (2008). doi: 10.1088/1367-2630/10/7/075002 CrossRefGoogle Scholar
  4. 4.
    Ke, C., Jiang, Y., Mieczkowski, P.A., Muramoto, G.G., Marszalek, P.E.: Nanoscale detection of ionizing radiation damage to DNA by atomic force microscopy. Small 4(2), 288–294 (2008). doi: 10.1002/smll.200700527 CrossRefGoogle Scholar
  5. 5.
    Pang, D., Rodgers, E.J., Berman, B.L., Chasovskikh, S., Dritschilo, A.: Spatial distribution of radiation-induced double-strand breaks in plasmid DNA as resolved by atomic force microscopy. Radiat. Res. 164, 755–765 (2005). doi: 10.1667/RR3425.1 CrossRefGoogle Scholar
  6. 6.
    Brezeanu, M., Taucher-Scholz, T., Psonka, K., Träger, F., Hubenthal, F.: SFM studies of carbon ion induced damages in plasmid DNA. J. Mol. Rec. 20(6), 502–507 (2007). doi: 10.1002/jmr.852 CrossRefGoogle Scholar
  7. 7.
    Boichot, S., Fromm, M., Cunniffe, S., O’Neill, P., Labrune, J.C., Chambaudet, A.: Investigation of radiation damage in DNA by using atomic force microscopy. Rad. Prot. Dos. 99(1–4), 143–145 (2002)Google Scholar
  8. 8.
    Psonka, K., Brons, S., Heiss, M., Gudowska-Nowak, E., Taucher-Scholz, G.: Induction of DNA damage by heavy ions measured by atomic force microscopy. J. Phys. Condens. Matter 17, 1443–1446 (2005). doi: 10.1088/0953-8984/17/18/002 CrossRefADSGoogle Scholar
  9. 9.
    Psonka, K., Gudowska-Nowak, E., Brons, S., Elsässer, T., Heiss, M., Taucher-Scholz, G.: Ionizing radiation-induced fragmentation of plasmid DNA – atomic force microscopy and biophysical modelling. Adv. Space Res. 39, 1043–1049 (2007). doi: 10.1016/j.asr.2007.02.089 CrossRefADSGoogle Scholar
  10. 10.
    Chapman, J.D., Reuvers, A.P., Borsa, J., Greenstock, C.L.: Chemical radioprotection and radiosensitization of mammalian cells growing in vitro. Radiat. Res. 56, 291–306 (1973). doi: 10.2307/3573667 CrossRefGoogle Scholar
  11. 11.
    Roots, R., Osaka, S.: Estimation of life times and diffusion distances of radicals involved in X-rays induced strand breaks or killing of mammalian cells. Radiat. Res. 64, 306–320 (1975). doi: 10.2307/3574267 CrossRefGoogle Scholar
  12. 12.
    Ward, J.F.: The Early Effects of Radiation on DNA. Springer Verlag, New-York (1991)Google Scholar
  13. 13.
    Hall, E.J.: Radiobiology for the Radiologist. Lippincott Company, Philadelphia (1994)Google Scholar
  14. 14.
    Goodhead, D.T.: Mechanism for the biological effectiveness of high-LET radiations. J. Rad. Res. 40(Suppl.), 1–13 (1999). doi: 10.1269/jrr.40.1 CrossRefGoogle Scholar
  15. 15.
    Smith-Ravin, J., Jeggo, P.A.: Use of damaged plasmid to study DNA repair in X-ray sensitive (xrs) strains of Chinese hamster ovary (CHO) cells. Int. J. Radiat. Biol. 56(6), 951–961 (1989). doi: 10.1080/09553008914552411 CrossRefGoogle Scholar
  16. 16.
    Milligan, J.R., Ng, J.Y.-Y., Wu, C.C.L., Aguilera, J.A., Ward, J.F., Kow, Y.W., Wallace, S.S., Cunningham, R.P.: Methylperoxyl radicals as intermediates in the damage to DNA irradiated in aqueous dimethyl sulfoxide with gamma rays. Radiat. Res. 146, 436–443 (1996). doi: 10.2307/3579305 CrossRefGoogle Scholar
  17. 17.
    Milligan, J.R., Wu, C.C.L., Ng, J.Y.-Y., Aguilera, J.A., Ward, J.F.: Characterisation of the reaction rate coefficient of DNA with hydroxyl radical. Radiat. Res. 146, 510–513 (1996). doi: 10.2307/3579551 CrossRefGoogle Scholar
  18. 18.
    Milligan, J.R., Aguilera, J.A., Ward, J.F.: Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution. Radiat. Res. 133, 151–157 (1993). doi: 10.2307/3578350 CrossRefGoogle Scholar
  19. 19.
    Hansma, H.G.: Surface biology of DNA by atomic force microscopy. Annu. Rev. Chem. 52, 71–92 (2001). doi: 10.1146/annurev.physchem.52.1.71 CrossRefGoogle Scholar
  20. 20.
    Bustamante, C., Vesenka, J., Tang, C.L., Rees, W., Guthold, M., Keller, R.: Circular DNA molecules imaged in air by scanning force microscopy. Biochem. 31(1), 22 (1992). doi: 10.1021/bi00116a005 CrossRefGoogle Scholar
  21. 21.
    Lyubchenko, Y.L., Jacobs, B.L., Lindsay, S.M.: Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res. 20(15), 3983–3986 (1992). doi: 10.1093/nar/20.15.3983 CrossRefGoogle Scholar
  22. 22.
    Hansma, H.G., Laney, D.E., Bezanilla, M., Sinsheimer, R.L., Hansma, P.K.: Applications for atomic force microscopy of DNA. Biophys. J. 68, 1672–1677 (1995)CrossRefADSGoogle Scholar
  23. 23.
    Shlyakhtenko, L.S., Gall, A.A., Weimer, J.J., Hawn, D.D., Lyubchenko, Y.L.: Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys. J. 77(1), 568–576 (1999)CrossRefGoogle Scholar
  24. 24.
    Binnig, G., Quate, C.F., Geber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986). doi: 10.1103/PhysRevLett.56.930 CrossRefADSGoogle Scholar
  25. 25.
    Muir, T., Morales, M., Root, J., Kumar, I., Garcia, B., Vellandi, C., Jenigian, D., Marsh, T., Henderson, E., Vesenka, J.: The morphology of duplex and quadruplex DNA on mica. J. Vac. Sci. Technol. A 16(3), 1172–1177 (1998). doi: 10.1116/1.581254 CrossRefADSGoogle Scholar
  26. 26.
    Bezanilla, M., Manne, S., Laney, D.E., Lyubchenko, Y.L., Hansma, H.G.: Absorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy. Langmuir 11, 655–659 (1995). doi: 10.1021/la00002a050 CrossRefGoogle Scholar
  27. 27.
    Severin, N., Barner, J., Kalachev, A.A., Rabe, J.P.: Manipulation and overstretching of genes on solid substrates. Nano Lett. 4(4), 577–579 (2004). doi: 10.1021/nl035147d CrossRefADSGoogle Scholar
  28. 28.
    Rief, M., Oesterhelt, B., Heymann, B., Gaub, H.E.: Reversible unfolding of individual titin Ig-domains by AFM. Science 275, 1295–1297 (1997). doi: 10.1126/science.275.5304.1295 CrossRefGoogle Scholar
  29. 29.
    Porath, D., Bezryadin, A., de Vries, S., Dekker, C.: Direct measurement of electrical transport through DNA molecules. Nature 403, 635–638 (2000). doi: 10.1038/35001029 CrossRefADSGoogle Scholar
  30. 30.
    Gutiérrez, R., Mandal, S., Cuniberti, L.: Dissipative effects in the electronic transport through DNA molecular wires. Phys. Rev. B 71, 235116 (2005). doi: 10.1103/PhysRevB.71.235116 CrossRefADSGoogle Scholar
  31. 31.
    Gervasio, F.L., Carloni, P., Parrinello, M.: Electronic structure of wet DNA. Phys. Rev. Lett. 89(10), 108102 (2002). doi: 10.1103/PhysRevLett.89.108102 CrossRefADSGoogle Scholar
  32. 32.
    Taucher-Scholz, G., Kraft, G.: Influence of radiation quality on the yield of DNA strand breaks in SV40 DNA irradiated in solution. Radiat. Res. 151(5), 595–604 (1999). doi: 10.2307/3580036 CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Murakami, J., Hirokawa, H., Hayata, I.: Analysis of radiation damage DNA by atomic force microscopy in comparison with gel electrophoresis studies. Biochem. Biophys. Methods. 44, 31–40 (2000). doi: 10.1016/S0165-022X(00)00049-X CrossRefGoogle Scholar
  35. 35.
    Pang, D., Berman, B.L., Chasovskikh, S., Rodgers, E.J., Dritschilo, A.: Investigation of neutron-induced damage in DNA by atomic force microscopy: evidence of clustered DNA lesions. Radiat. Res. 150, 612–618 (1998). doi: 10.2307/3579883 CrossRefGoogle Scholar
  36. 36.
    Jones, G.D.D., Milligan, J.R., Ward, J.F., Calabro-Jones, P.M., Aquilera, J.A.: Yield of strand breaks as a function of scavenger concentration and LET for SV40 irradiated with He ions. Radiat. Res. 136, 190–196 (1993). doi: 10.2307/3578610 CrossRefGoogle Scholar
  37. 37.
    Terato, H., Ide, H.: Clustered DNA damage induced by heavy ion particles. Biol. Sci. Space 18(4), 206–215 (2004). doi: 10.2187/bss.18.206 CrossRefGoogle Scholar
  38. 38.
    Newman, H.C., Prise, K.M., Folkard, M., Michael, B.D.: DNA double-strand break distribution in X-rays and α-particle irradiated V79 cells: evidence for non-random breakeage. Int. J. Radiat. Biol. 71, 347–363 (1997). doi: 10.1080/095530097143978 CrossRefGoogle Scholar
  39. 39.
    Wong, R.S.L., Dynlacht, J.R., Cedervall, B., Dewey, W.C.: Analysis by pulsed-field gel electrophoresis of DNA double stand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int. J. Radiat. Biol. 68(2), 141–152 (1995). doi: 10.1080/09553009514551041 CrossRefGoogle Scholar
  40. 40.
    Sutherland, B.M., Bennett, P.V., Sidorkina, O., Laval, J.: Clustered DNA damages induced in isolated DNA and human cells by low doses of ionising radiation. Proc. Natl. Acad. Sci. USA 97, 103–108 (2000). doi: 10.1073/pnas.97.1.103 CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology—CINSaTUniversity of KasselKasselGermany

Personalised recommendations