Skip to main content
Log in

On the Problem of Diffusivity in Heterogeneous Biological Materials with Random Structure

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Biological tissues are multicompartmental heterogeneous media composed of cellular and subcellular domains. Randomly walking water molecules may have different diffusion coefficients and densities (concentrations) in different domains, namely within cells and within the outer medium. Results of the proposed effective media scale-averaging iterative scheme are used to explore the effects of a large range of microstructural and compositional parameters on the apparent (effective) diffusion coefficient. A self-consistent modelling framework for predicting the steady-state effective diffusion coefficient is presented; the framework reveals the strong dependence of the apparent diffusion coefficient on the ratio of the microscopic diffusion coefficients of the comprising phases, permeability of the cells, and their volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon, Oxford (1991)

    Google Scholar 

  2. Le Bihan, D. (ed.): Magnetic Resonance Imaging of Diffusion and Perfusion: Applications to Functional Imaging. Lippincott-Raven, New York (1995)

    Google Scholar 

  3. Horsfield, M.A., Jones, D.K.: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR Biomed. 15, 570–577 (2002). doi:10.1002/nbm.787

    Article  Google Scholar 

  4. Nicholson, C.: Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64, 815–884 (2001). doi:10.1088/0034-4885/64/7/202

    Article  ADS  Google Scholar 

  5. Norris, D.G.: The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 14, 77–93 (2001). doi:10.1002/nbm.682

    Article  Google Scholar 

  6. Szafer, A., Zhong, J., Gore, J.: Theoretical-model for water diffusion in tissues. Magn. Reson. Med. 33, 697–712 (1995). doi:10.1002/mrm.1910330516

    Article  Google Scholar 

  7. Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007). doi:10.1103/RevModPhys.79.1077

    Article  ADS  Google Scholar 

  8. Posnansky, O.P., Huang, R., Shah, N.J.: The truncated Levy-flight process: application to the random spin phase change in non-linear magnetic fields. Phys. A: Stat. Mech. Appl. 370, 553–564 (2006)

    Article  Google Scholar 

  9. Posnansky, O.P., Huang, R., Shah, N.J.: Translational free random walk of spins in the presence of a parabolic magnetic field. J. Magn. Reson. 173, 1–9 (2005). doi:10.1016/j.jmr.2004.11.010

    Article  ADS  Google Scholar 

  10. Sen, P.N., Basser, P.J.: A model for diffusion in white matter in the brain. Biophys. J. 89, 2927–2938 (2005). doi:10.1529/biophysj.105.063016

    Article  ADS  Google Scholar 

  11. Crank, J.: The Mathematics of Diffusion. Clarendon, Oxford (1955)

    Google Scholar 

  12. Carslow, H.S., Jager, J.C.: Conduction of Heat in Solids. Clarendon, Oxford (1959)

    Google Scholar 

  13. Bernasconi, J.: Real-space renormalization of bond-disordered conductance lattices. Phys. Rev. B 18, 2185–2191 (1978). doi:10.1103/PhysRevB.18.2185

    Article  ADS  MathSciNet  Google Scholar 

  14. Poznansky, O.P., Novikov, V.V.: Electrical treeing in composite materials. J. Polym. Eng. 19, 223–231 (1999)

    Google Scholar 

  15. Crick, F.: Diffusion in embryogenesis. Nature 225, 420–421 (1970). doi:10.1038/225420a0

    Article  ADS  Google Scholar 

  16. Latour, L.L., Svoboda, K., Mitra, P.P., Sotak, C.H.: Time-dependent diffusion of water in a biological model system. Proc. Natl. Acad. Sci. U.S.A. 91, 1229–1233 (1994). doi:10.1073/pnas.91.4.1229

    Article  ADS  Google Scholar 

  17. Rollenhagen, A., Lübke, J.H.R.: The morphology of excitatory central synapses: from structure to function. Cell Tissue Res. 326, 221–237 (2006)

    Article  Google Scholar 

  18. Harsan, L.A., Poulet, P., et al.: Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter. J. Neurosci. Res. 85, 935–944 (2007). doi:10.1002/jnr.21201

    Article  Google Scholar 

  19. Rushton, W.: A theory of the effects of fibre size in medullated nerve. J. Physiol. 115, 101–122 (1951)

    Google Scholar 

  20. Reynolds, P.J., Stanley, H.E., Klein, W.: Large-cell Monte-Carlo renormalization-group for percolation. Phys. Rev. B 21, 1223–1245 (1980). doi:10.1103/PhysRevB.21.1223

    Article  ADS  Google Scholar 

  21. Watson, B., Leath, P.: Conductivity in 2-dimensional-site percolation problem. Phys. Rev. B 9(11), 4893–4896 (1974). doi:10.1103/PhysRevB.9.4893

    Article  ADS  Google Scholar 

  22. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford Univ. Press, Oxford (1971)

    Google Scholar 

  23. Hashin, Z.: Theory of Composite Materials. Pergamon, New York (1983)

    Google Scholar 

  24. Posnansky, O., Shah, J.: Diffusivity in the brain white matter: application of recursive effective medium approximation. In: Proceedings of the 16th Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), ISSN 1545-4428, pp. 633–634. Toronto, Canada (2008)

  25. Neeb, H., Zilles, K., Shah, N.: A new method for fast quantitative mapping of absolute water content in vivo. NeuroImage 31, 1156–1168 (2006). doi:10.1016/j.neuroimage.2005.12.063

    Article  Google Scholar 

  26. Ford, J., Hackney, D.: Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J. Magn. Reson. Med. 37, 387–394 (1998). doi:10.1002/mrm.1910370315

    Article  Google Scholar 

  27. Andrews, T., Osborn, M., Does, M.: Diffusion of myelin water. Magn. Reson. Med. 56, 381–385 (2006). doi:10.1002/mrm.20945

    Article  Google Scholar 

  28. Warntjes, J., Dahlqvist, O., Lundberg, P.: Novel method for rapid, simultaneous T-1, T-2(*), and proton density quantification. Magn. Reson. Med. 57, 528–535 (2007). doi:10.1002/mrm.21165

    Article  Google Scholar 

  29. Hall, M., Alexander. D.: Agreement and disagreement between two models of diffusion MR signal. In: Proceedings of the 16th Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), ISSN 1545-4428, pp. 1779–1780. Toronto, Canada (2008)

  30. Posnansky, O., Kupriyanova, Y., Shah, J.: Recursive effective medium approximation: application to the non-monoexponential DW signal decay. In: Proceedings of the 25th Scientific Meeting and Exhibition of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), Valencia, Spain. ESMRB 633 (2008). doi:10.1007/s10334-008-0124-4

Download references

Acknowledgements

We would like to thank Prof. J. Lübke, Dr. R. Huang, and E. Nicksch for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Posnansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posnansky, O.P., Shah, N.J. On the Problem of Diffusivity in Heterogeneous Biological Materials with Random Structure. J Biol Phys 34, 551–567 (2008). https://doi.org/10.1007/s10867-008-9119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9119-7

Keywords

Navigation