Line-Scanning Microscopy for Time-Gated and Spectrally Resolved Fluorescence Imaging


Laser-scanning fluorescence microscopy for efficient acquisition of time-gated and spectrally resolved fluorescence images was developed based on line illumination of the laser beam and detection of the fluorescence image through a slit. In this optical arrangement, the fluorescence image was obtained by scanning only one axis perpendicular to the excitation line, and the acquisition time was significantly reduced compared with conventional laser-scanning confocal microscopy. A multidimensional fluorescence dataset consisting of fluorescence intensities as a function of x-position, y-position, fluorescence wavelength, and delay time after photoexcitation was analyzed and decomposed based on the parallel factor analysis model. The performance of the line-scanning microscopy was examined by applying it to the analysis of one of the plant defense responses, accumulation of antimicrobial compounds of phytoalexin in oat (Avena sativa), induced by the elicitor treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Evanko, D. (ed.): Focus on fluorescence imaging—principles and practice of microscope techniques. Nat. Methods 2, 901–950 (2005)

    Article  Google Scholar 

  2. 2.

    Invitrogen: The handbook—a guide to fluorescent probes and labeling technologies. Available via DIALOG. (2008)

  3. 3.

    Chudakov, D.M., Lukyanov, S., Lukyanov, K.A.: Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005)

    Article  Google Scholar 

  4. 4.

    Richards-Kortum, R., Sevick-Muraca, E.: Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606 (1996)

    Article  Google Scholar 

  5. 5.

    Andersson-Engels, S., af Klinteberg, C., Svanberg, K., Svanberg, S.: In vivo fluorescence imaging for tissue diagnostics. Phys. Med. Biol. 42, 815–824 (1997)

    Article  Google Scholar 

  6. 6.

    Bennett, M., Gallagher, M., Fagg, J., Beswick, C., Paul, T., Beale, M., Mansfield, J.: The hypersensitive reaction, membrane damage and accumulation of autofluorescence phenolics in lettuce cells challenged by Bremia lactucae. Plant J. 9, 851–865 (1996)

    Article  Google Scholar 

  7. 7.

    Andersson, H., Baechi, T., Hoechl, M., Richter, C.: Autofluorescence of living cells. J. Microsc. 191, 1–7 (1998)

    Article  Google Scholar 

  8. 8.

    Betz, C.S., Mehlmann, M., Rick, K., Stepp, H., Grevers, G., Baumgartner, R., Leunig, A.: Autofluorescence imaging and spectroscopy of normal and malignant mucosa in patients with head and neck cancer. Lasers Surg. Med. 25, 323–334 (1999)

    Article  Google Scholar 

  9. 9.

    Inaguma, M., Hashimoto, K.: Porphyrin-like fluorescence in oral cancer. Cancer 86, 2201–2211 (1999)

    Article  Google Scholar 

  10. 10.

    Rigacci, L., Alterini, R., Bernabei, P.A., Ferrini, P.R., Agati, G., Fusi, F., Monici, M.: Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues. Photochem. Photobiol. 71, 737–742 (2000)

    Article  Google Scholar 

  11. 11.

    Huang, S., Heikal, A.A., Webb, W.W.: Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002)

    Article  Google Scholar 

  12. 12.

    Ashjian, P., Elbarbary, A., Zuk, P., DeUgrate, D.A., Benhaim, P., Marcu, L., Hedrick, M.H.: Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy. Tissue Eng. 10, 411–420 (2004)

    Article  Google Scholar 

  13. 13.

    Zangaro, R.A., Silveira, L., Manoharan, R., Zonios, G., Itzkan, I., Dasari, R.R., Van Dam, J., Feld, M.S.: Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis. Appl. Opt. 35, 5211–5219 (1996)

    Article  ADS  Google Scholar 

  14. 14.

    Zuluaga, A.F., Utzinger, U., Durkin, A., Fuchs, H., Gillenwater, A., Jacob, R., Kemp, B., Fan, J., Richards-Kortum, R.: Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and method of data analysis. Appl. Spectrosc. 53, 302–311 (1999)

    Article  ADS  Google Scholar 

  15. 15.

    Coghlan, L., Utzinger, U., Drezek, R., Heintzelman, D., Zuluaga, A., Brookner, C., Richards-Kortum, R., Gimenez-Conti, I., Follen, M.: Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model. Opt. Express 7, 436–446 (2000)

    ADS  Google Scholar 

  16. 16.

    Zellweger, M., Grosjean, P., Goujon, D., Monnier, P., van den Bergh, H., Wagnieres, G.: In vivo autofluorescence spectroscopy of human bronchial tissue to optimize the detection and imaging of early cancers. J. Biomed. Opt. 6, 41–51 (2001)

    Article  ADS  Google Scholar 

  17. 17.

    Brancaleon, L., Durkin, A.J., Tu, J.H., Menaker, G., Fallon, J.D., Kollias, N.: In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73, 178–183 (2001)

    Article  Google Scholar 

  18. 18.

    Shirakawa, H., Miyazaki, S.: Blind spectral decomposition of single-cell fluorescence by parallel factor analysis. Biophys. J. 86, 1739–1752 (2004)

    Article  ADS  Google Scholar 

  19. 19.

    Malik, Z., Cabib, D., Buckwald, R.A., Talmi, A., Garini, Y., Lipson, S.G.: Fourier transform multipixel spectroscopy for quantitative cytology. J. Microsc. 182, 133–140 (1996)

    Article  Google Scholar 

  20. 20.

    Hanley, Q.S., Arndt-Jovin, D.J., Jovin, T.M.: Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002)

    Article  ADS  Google Scholar 

  21. 21.

    Siegel, J., Elson, D.S., Webb, S.E.D., Parsons-Karavassilis, D., Leveque-Font, S., Cole, M.J., Lever, M.J., French, P.M.W., Neil, M.A.A., Juskaitis, R., Sucharov, L.O., Wilson, T.: Whole-field five-dimensional fluorescence microscopy combining lifetime and spectral resolution with optical sectioning. Opt. Lett. 26, 1338–1340 (2001)

    Article  ADS  Google Scholar 

  22. 22.

    Haralampus-Grynaviski, N.M., Stimson, M.J., Simon, J.D.: Design and application of rapid-scan spectrally resolved fluorescence microscopy. Appl. Spectrosc. 54, 1727–1733 (2000)

    Article  ADS  Google Scholar 

  23. 23.

    Veirs, D.K., Ager, J.W., Loucks, E.T., Rosenblatt, G.M.: Mapping materials properties with Raman spectroscopy utilizing a 2-D detector. Appl. Opt. 29, 4969–4980 (1990)

    Article  ADS  Google Scholar 

  24. 24.

    Brakenhoff, G.J., Visscher, K.: Confocal imaging with bilateral scanning and array detectors. J. Microsc. 165, 139–146 (1991)

    Google Scholar 

  25. 25.

    Brakenhoff, G.J., Squier, J., Norris, T., Bliton, A.C., Wade, M.H., Athey, B.: Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc. 181, 253–259 (1996)

    Article  Google Scholar 

  26. 26.

    Stimson, M.J., Haralampus-Grynaviski, N., Simon, J.D.: A unique optical arrangement for obtaining spectrally resolved confocal images. Rev. Sci. Instrum. 70, 3351–3354 (1999)

    Article  ADS  Google Scholar 

  27. 27.

    Harshman, R.A., Lundy, M.E.: PARAFAC: parallel factor analysis. Comput. Stat. Data Anal. 18, 39–72 (1994)

    MATH  Article  Google Scholar 

  28. 28.

    Bro, R.: PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997)

    Article  Google Scholar 

  29. 29.

    Bro, R.: Review on multiway analysis in chemistry—2000–2005. Crit. Rev. Anal. Chem. 36, 279–293 (2006)

    Article  Google Scholar 

  30. 30.

    Anderson, C.M., Bro, R.: Practical aspects of PARAFAC modeling of fluorescence excitation–emission data. J. Chemom. 17, 200–215 (2003)

    Article  Google Scholar 

  31. 31.

    Mayama, S., Tani, T., Matsuura, Y., Ueno, T., Fukami, H.: The production of phytoalexins by oat in response to crown rust, Puccinia-coronata f. sp. avenae. Physiol. Plant Pathol. 19, 217 (1981)

    Google Scholar 

  32. 32.

    Mayama, S., Matsuura, Y., Iida, H., Tani, T.: The role of avenalumin in the resistance of oat to crown rust, Puccinia-coronata f. sp. avenae. Physiol. Plant Pathol. 20, 189–199 (1982)

    Article  Google Scholar 

  33. 33.

    Collins, F.W.: Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J. Agric. Food Chem. 37, 60–66 (1989)

    Article  Google Scholar 

  34. 34.

    Bordin, A.P.A., Mayama, S., Tani, T.: Potential elicitors for avenalumin accumulation in oat leaves. Ann. Phytopathol. Soc. Jpn. 57, 688–695 (1991)

    Google Scholar 

  35. 35.

    Miyagawa, H., Ishihara, A., Nishimoto, T., Ueno, T., Mayama, S.: Induction of avenanthramides in oat leaves inoculated with crown rust fungus, Puccinia-coronata f. sp. avenae. Biosci. Biotechnol. Biochem. 59, 2305–2306 (1995)

    Google Scholar 

  36. 36.

    Miyagawa, H., Ishihara, A., Kuwahara, Y., Ueno, T., Mayama, S.: Comparative studies of elicitors that induce phytoalexin in oats. J. Pestic. Sci. 21, 203–207 (1996)

    Google Scholar 

  37. 37.

    Andersson, C.A., Bro, R.: The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 52, 1–4 (2000)

    Article  Google Scholar 

  38. 38.

    Ishihara, A., Miyagawa, H., Matsukawa, T., Ueno, T., Mayama, S., Iwamura, H.: Induction of hydroxyanthranilate hydroxycinnamoyl transferase activity by oligo-N-acetylchitooligosaccharides in oats. Phytochemistry 47, 969–974 (1998)

    Article  Google Scholar 

  39. 39.

    Ishihara, A., Ohtsu, Y., Iwamura, H.: Induction of biosynthetic enzymes for avenanthramides in elicitor-treated oat leaves. Planta 208, 512–518 (1999)

    Article  Google Scholar 

  40. 40.

    Oster, G., Nishijima, Y.: Fluorescence and internal rotation: their dependence on viscosity of the medium. J. Am. Chem. Soc. 78, 1581–1584 (1956)

    Article  Google Scholar 

  41. 41.

    Sharafy, S., Muszkat, K.A.: Viscosity dependence of fluorescence quantum yields. J. Am. Chem. Soc. 93, 4119–4125 (1971)

    Article  Google Scholar 

Download references


We thank Dr. A. Ishihara (Kyoto University, Kyoto) for helpful discussion and for providing avenanthramides. This work was supported by a grant from CREST of the Japan Science and Technology Agency and by the Grant-in-Aid for Scientific Research in Priority Area (432) “Molecular Nano Dynamics” from the Ministry of Education, Culture, Sports, Science, and Technology (No. 17034033).

Author information



Corresponding author

Correspondence to Ryosuke Nakamura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakamura, R., Izumi, Y., Kajiyama, S. et al. Line-Scanning Microscopy for Time-Gated and Spectrally Resolved Fluorescence Imaging. J Biol Phys 34, 51 (2008).

Download citation


  • Fluorescence microscopy
  • Autofluorescence
  • Phytoalexin